Menu Close

Category: Limits

Question-94528

Question Number 94528 by i jagooll last updated on 19/May/20 Commented by i jagooll last updated on 19/May/20 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{{x}^{\mathrm{2}} \:\left\{\sqrt[{\mathrm{4}\:\:}]{\mathrm{1}−\frac{\mathrm{2}}{{x}}}−\mathrm{1}+\frac{\mathrm{2}}{{x}^{\mathrm{2}} }\right\}}{{x}^{\mathrm{2}} \left\{\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }−\sqrt[{\mathrm{4}\:\:}]{\mathrm{16}+\frac{\mathrm{7}}{{x}^{\mathrm{7}} }}\right\}}\:=\:\mathrm{0}…

find-lim-x-0-1-x-ln-e-x-1-x-

Question Number 28892 by abdo imad last updated on 31/Jan/18 $${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{\mathrm{1}}{{x}}{ln}\left(\frac{{e}^{{x}} −\mathrm{1}}{{x}}\right)\:. \\ $$ Answered by ajfour last updated on 01/Feb/18 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}}{{x}}\mathrm{ln}\:\left(\frac{{x}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{{x}^{\mathrm{3}}…

Evaluate-i-lim-x-2-3x-3-4x-2-ii-lim-x-2-3x-3-4x-2-

Question Number 28876 by Rasheed.Sindhi last updated on 31/Jan/18 $$\mathcal{E}{valuate} \\ $$$$\left(\mathrm{i}\right)\:\:\underset{{x}\rightarrow−\infty} {{lim}}\:\:\frac{\mathrm{2}−\mathrm{3x}}{\:\sqrt{\mathrm{3}+\mathrm{4x}^{\mathrm{2}} }} \\ $$$$\left(\mathrm{ii}\right)\:\:\underset{{x}\rightarrow+\infty} {{lim}}\:\:\frac{\mathrm{2}−\mathrm{3x}}{\:\sqrt{\mathrm{3}+\mathrm{4x}^{\mathrm{2}} }} \\ $$ Commented by abdo imad last…

Prove-lim-n-n-k-n-1-n-1-k-1-k-1-2-

Question Number 159936 by qaz last updated on 22/Nov/21 $$\mathrm{Prove}::\:\:\:\underset{\mathrm{n}\rightarrow+\infty} {\overline {\mathrm{lim}}n}\underset{\mathrm{k}=\mathrm{n}+\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{k}−\mathrm{1}} }{\mathrm{k}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Prove-lim-x-xe-x-1-x-e-t-sin-t-t-dt-1-2-

Question Number 159935 by qaz last updated on 22/Nov/21 $$\mathrm{Prove}::\:\:\:\:\underset{\mathrm{x}\rightarrow+\infty} {\overline {\mathrm{lim}}xe}^{−\mathrm{x}} \int_{\mathrm{1}} ^{\mathrm{x}} \frac{\mathrm{e}^{\mathrm{t}} \mathrm{sin}\:\mathrm{t}}{\mathrm{t}}\mathrm{dt}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com