Menu Close

Category: Limits

let-give-a-sequence-of-reals-a-n-n-a-n-gt-0-and-U-n-a-n-1-a-1-1-a-2-1-a-n-1-prove-that-u-n-converges-2-calculate-u-n-if-u-n-1-n-

Question Number 28617 by abdo imad last updated on 27/Jan/18 $${let}\:{give}\:{a}\:{sequence}\:{of}\:{reals}\:\left({a}_{{n}} \right)_{{n}} \:\:/\:{a}_{{n}} >\mathrm{0}\:\:{and} \\ $$$${U}_{{n}} =\:\:\:\frac{{a}_{{n}} }{\left(\mathrm{1}+{a}_{\mathrm{1}} \right)\left(\mathrm{1}+{a}_{\mathrm{2}} \right)….\left(\mathrm{1}+{a}_{{n}} \right)} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\Sigma\:{u}_{{n}} \:{converges} \\…

Question-159670

Question Number 159670 by Ar Brandon last updated on 19/Nov/21 Answered by puissant last updated on 20/Nov/21 $$\left.\mathrm{1}\right) \\ $$$${U}_{{n}} =\frac{{n}}{{n}^{\mathrm{3}} +\mathrm{1}}\:\underset{+\infty} {\sim}\frac{{n}}{{n}^{\mathrm{3}} }\:=\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:\:{ainsi},\:{si}\:{on}\:{compare}…

lim-x-0-1-cos-x-sin-x-x-3-

Question Number 159646 by cortano last updated on 19/Nov/21 $$\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\left(\mathrm{cos}\:{x}\right)^{\mathrm{sin}\:{x}} }{{x}^{\mathrm{3}} }\:=? \\ $$ Answered by FongXD last updated on 19/Nov/21 $$\mathrm{L}=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\left(\mathrm{cosx}\right)^{\mathrm{sinx}} }{\mathrm{x}^{\mathrm{3}}…

Question-159613

Question Number 159613 by cortano last updated on 19/Nov/21 Commented by tounghoungko last updated on 19/Nov/21 $$\:{A}\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2sin}\:{x}\left(\mathrm{1}−\mathrm{cos}\:{x}\right)}{\mathrm{sin}\:{x}\left(\mathrm{1}−\mathrm{cos}\:^{\mathrm{3}} {x}\right)} \\ $$$$\:{A}=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}\left(\mathrm{1}−\mathrm{cos}\:{x}\right)}{\left(\mathrm{1}−\mathrm{cos}\:{x}\right)\left(\mathrm{cos}\:^{\mathrm{2}} {x}+\mathrm{cos}\:{x}+\mathrm{1}\right)} \\ $$$$\:{A}=\:\frac{\mathrm{2}}{\mathrm{3}}…

Question-159611

Question Number 159611 by cortano last updated on 19/Nov/21 Answered by qaz last updated on 19/Nov/21 $$\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\sqrt[{\mathrm{x}^{\mathrm{2}} }]{\mathrm{1}+\mathrm{sin}\:\left(\mathrm{1}−\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{x}}\right)} \\ $$$$=\mathrm{e}\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{sin}\:\left(\mathrm{1}−\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{x}}\right)\right)}{\mathrm{x}^{\mathrm{2}} } \\ $$$$=\mathrm{e}\underset{\mathrm{x}\rightarrow\mathrm{0}}…