Menu Close

Category: Limits

I-n-0-pi-2-sin-2-nt-sin-t-dt-Find-lim-n-2I-n-lnn-

Question Number 160395 by qaz last updated on 29/Nov/21 $$\mathrm{I}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{nt}\right)}{\mathrm{sin}\:\mathrm{t}}\mathrm{dt} \\ $$$$\mathrm{Find}::\:\:\:\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{2I}_{\mathrm{n}} −\mathrm{lnn}\right)=? \\ $$ Answered by Kamel last updated…

lim-n-2-2-2-1-1-2-n-1-2-2-2-3-1-2-1-n-2-2-n-1-2-n-1-1-2-

Question Number 160394 by qaz last updated on 29/Nov/21 $$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{2}}{\mathrm{2}^{\mathrm{2}} −\mathrm{1}}\right)^{\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}−\mathrm{1}} }} \left(\frac{\mathrm{2}^{\mathrm{2}} }{\mathrm{2}^{\mathrm{3}} −\mathrm{1}}\right)^{\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{n}−\mathrm{2}}} } \centerdot…\centerdot\left(\frac{\mathrm{2}^{\mathrm{n}−\mathrm{1}} }{\mathrm{2}^{\mathrm{n}} −\mathrm{1}}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} =? \\ $$ Terms of…

Show-that-the-sequence-1-1-2-1-4-1-2-n-n-0-is-convergent-

Question Number 29310 by tawa tawa last updated on 07/Feb/18 $$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sequence}:\:\:\:\:\:\left\{\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\:+\:\frac{\mathrm{1}}{\mathrm{4}}\:+\:…\:+\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}} }\right\}_{\mathrm{n}\:\:=\:\mathrm{0}} ^{\infty} \:\:\:\:\:\:\:\:\:\mathrm{is}\:\mathrm{convergent}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-94764

Question Number 94764 by Hamida last updated on 20/May/20 Answered by prakash jain last updated on 20/May/20 $$\mathrm{1a}\:\left(\mathrm{i}\right) \\ $$$$\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}=\mathrm{1}\:\left(\mathrm{top}\:\mathrm{point}\:\mathrm{of}\:\mathrm{semicircle}\right) \\ $$$$\mathrm{1a}\left(\mathrm{ii}\right) \\ $$$$\underset{{x}\rightarrow−\mathrm{1}^{−}…

Question-94730

Question Number 94730 by i jagooll last updated on 20/May/20 Answered by john santu last updated on 20/May/20 $$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\mathrm{e}^{\mathrm{ln}\left(\mathrm{x}\right)^{\mathrm{sin}\:\mathrm{x}} } =\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{e}^{\mathrm{sin}\:\mathrm{x}.\:\mathrm{ln}\left(\mathrm{x}\right)} \\…