Menu Close

Category: Limits

if-f-x-mx-2-n-x-lt-0-nx-m-0-x-1-nx-3-m-x-gt-1-for-what-integers-m-and-n-does-both-lim-x-0-f-x-and-lim-x-1-f-x-exist-

Question Number 27700 by NECx last updated on 13/Jan/18 $${if}\:{f}\left({x}\right)=\begin{cases}{{mx}^{\mathrm{2}} +{n},\:\:\:\:\:{x}<\mathrm{0}}\\{{nx}+{m},\:\:\:\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}}\\{{nx}^{\mathrm{3}} +{m},\:\:\:{x}>\mathrm{1}}\end{cases} \\ $$$${for}\:{what}\:{integers}\:{m}\:{and}\:{n}\:{does} \\ $$$${both}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{f}\left({x}\right)\:{and}\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}{f}\left({x}\right)\:{exist}? \\ $$ Commented by NECx last updated…

Question-93200

Question Number 93200 by i jagooll last updated on 11/May/20 Commented by mathmax by abdo last updated on 11/May/20 $${let}\:{f}\left({x}\right)\:=\left(\mathrm{2}^{{x}} \:+\mathrm{3}^{{x}} −\mathrm{12}\right)^{{tan}\left(\frac{\pi{x}}{\mathrm{4}}\right)} \:\Rightarrow{ln}\left({f}\left({x}\right)\right)={tan}\left(\frac{\pi{x}}{\mathrm{4}}\right){ln}\left(\mathrm{2}^{{x}} \:+\mathrm{3}^{{x}} −\mathrm{12}\right)…

let-give-U-n-n-1-n-2-1-1-2-n-2-1-2-2-n-2-1-n-1-2-n-2-find-lim-n-gt-U-n-

Question Number 27663 by abdo imad last updated on 12/Jan/18 $${let}\:{give}\:\:{U}_{{n}} ={n}\:\left(\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:\:+\:\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} +{n}^{\mathrm{2}} }+\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} +{n}^{\mathrm{2}} }\:+….\:\frac{\mathrm{1}}{\left({n}−\mathrm{1}\right)^{\mathrm{2}} +{n}^{\mathrm{2}} }\right) \\ $$$${find}\:{lim}_{{n}−>\propto} \:\:{U}_{{n}} \:\:\:. \\ $$$$…

lim-x-0-0-x-a-bcos-t-c-cos-2t-dt-x-5-15-

Question Number 93146 by i jagooll last updated on 11/May/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\underset{\mathrm{0}} {\overset{\mathrm{x}} {\int}}\left(\mathrm{a}+\mathrm{bcos}\:\mathrm{t}+\mathrm{c}\:\mathrm{cos}\:\left(\mathrm{2t}\right)\right)\mathrm{dt}}{\mathrm{x}^{\mathrm{5}} }\:=\:\mathrm{15} \\ $$ Commented by i jagooll last updated on 11/May/20…

f-fonction-numerical-increasing-on-0-1-and-0-1-f-t-dt-converges-prove-that-lim-n-gt-1-n-k-1-n-f-k-n-0-1-f-t-dt-

Question Number 27601 by abdo imad last updated on 10/Jan/18 $$\left.{f}\left.\:{fonction}\:{numerical}\:{increasing}\:{on}\:\right]\mathrm{0},\mathrm{1}\right]\:{and} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({t}\right){dt}\:{converges}\:{prove}\:{that}\:\:{lim}_{{n}−>\propto} \:\:\frac{\mathrm{1}}{{n}}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{f}\left(\frac{{k}}{{n}}\right) \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({t}\right){dt}\:\:. \\ $$ Terms…

let-give-I-n-n-1-1-1-n-f-x-n-dx-with-f-is-numerical-function-integrable-on-1-e-prove-that-lim-n-gt-I-n-1-e-f-t-t-dt-

Question Number 27497 by abdo imad last updated on 07/Jan/18 $${let}\:{give}\:{I}_{{n}} =\:{n}\:\int_{\mathrm{1}} ^{\mathrm{1}+\frac{\mathrm{1}}{{n}}} {f}\left({x}^{{n}} \right){dx}\:{with}\:{f}\:{is}\:{numerical} \\ $$$${function}\:{integrable}\:{on}\left[\mathrm{1},{e}\right]\:.{prove}\:{that} \\ $$$${lim}_{{n}−>\propto} \:\:{I}_{{n}} \:=\:\int_{\mathrm{1}} ^{{e}} \:\:\frac{{f}\left({t}\right)}{{t}}\:{dt}. \\ $$…