Question Number 93033 by i jagooll last updated on 10/May/20 $$\underset{{x}\rightarrow\pi/\mathrm{6}} {\mathrm{lim}}\:\left(\mathrm{tan}\:\left(\frac{\mathrm{3x}}{\mathrm{2}}\right)\right)^{\mathrm{tan}\:\left(\mathrm{3x}\right)} =?\: \\ $$ Commented by john santu last updated on 10/May/20 $$\mathrm{let}\:\frac{\mathrm{3x}}{\mathrm{2}}\:=\:\mathrm{t}\:\Rightarrow\mathrm{3x}\:=\:\mathrm{2t}\: \\…
Question Number 27446 by amit96 last updated on 07/Jan/18 Commented by prakash jain last updated on 08/Jan/18 $$\sqrt{\mathrm{1}−{u}_{{n}} }=\mathrm{1}−{u}_{{n}+\mathrm{1}} \\ $$$${b}_{{n}} =\mathrm{1}−{u}_{{n}} \\ $$$$\sqrt{{b}_{{n}} }={b}_{{n}+\mathrm{1}}…
Question Number 92966 by i jagooll last updated on 10/May/20 $$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{\mathrm{6x}+\mathrm{5}}{\:\sqrt{\mathrm{9x}^{\mathrm{2}} +\mathrm{4x}−\mathrm{2}}}\:? \\ $$ Commented by i jagooll last updated on 10/May/20 $$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{\frac{\mathrm{6x}}{\mid\mathrm{x}\mid}+\frac{\mathrm{5}}{\mid\mathrm{x}\mid}}{\:\sqrt{\mathrm{9}+\frac{\mathrm{4}}{\mathrm{x}}−\frac{\mathrm{2}}{\mathrm{x}^{\mathrm{2}}…
Question Number 27380 by abdo imad last updated on 05/Jan/18 $${find}\:{the}\:{value}\:{of}\:{S}_{{n}} =\:\:\sum_{{k}=\mathrm{0}} ^{{k}={n}} \:\:\:\frac{\left(−\mathrm{1}\right)^{{k}} \:{C}_{{n}} ^{{k}} }{\mathrm{2}{k}+\mathrm{1}}\:\:. \\ $$ Commented by abdo imad last updated…
Question Number 27327 by Giannibo last updated on 05/Jan/18 $$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{x}^{\mathrm{2n}} }{\mathrm{1}+\mid\mathrm{x}\mid+\mathrm{x}^{\mathrm{4n}} } \\ $$ Commented by abdo imad last updated on 05/Jan/18 $$=\:{lim}_{{n}−>\propto} \:\:\:\:\frac{/{x}/^{\mathrm{2}{n}}…
Question Number 158327 by Tawa11 last updated on 02/Nov/21 $$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sequence}\:\:\:\:\frac{\mathrm{x}^{\mathrm{n}} }{\mathrm{1}\:\:\:+\:\:\:\mathrm{x}^{\mathrm{n}} }\:\:\:\:\mathrm{does}\:\mathrm{not}\:\mathrm{converge}\:\mathrm{uniformly}\:\mathrm{on}\:\:\left[\mathrm{0},\:\:\mathrm{2}\right] \\ $$$$\mathrm{by}\:\mathrm{showing}\:\mathrm{that}\:\mathrm{the}\:\mathrm{limit}\:\mathrm{function}\:\mathrm{is}\:\mathrm{not}\:\mathrm{continuous}\:\mathrm{on}\:\:\:\:\left[\mathrm{0},\:\:\mathrm{2}\right] \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 92785 by Ar Brandon last updated on 09/May/20 $$\left.\mathrm{a}\left.\right)\:\mathrm{Find}\:\mathrm{E}\left(\mathrm{x}^{\mathrm{x}} \right)\:\mathrm{then}\:\mathrm{E}\left(\mathrm{x}^{\mathrm{x}^{\mathrm{x}} } \right)\:\mathrm{for}\:\mathrm{x}\in\right]\mathrm{0},\mathrm{1}\left[\right. \\ $$$$\left.\mathrm{b}\right)\:\mathrm{find}\:\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{E}\left(\mathrm{x}^{\mathrm{x}^{\mathrm{x}} } \right) \\ $$ Commented by Ar Brandon…
Question Number 92782 by device4438043516@gmail.com last updated on 23/May/20 $$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 92741 by john santu last updated on 09/May/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{2}}{\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{x}\right)}\:+\:\frac{\mathrm{1}}{\mathrm{ln}\left(\mathrm{cos}\:\left(\mathrm{x}\right)\right)}\right)\:= \\ $$ Commented by abdomathmax last updated on 09/May/20 $${yes}\:{yes}\:…{i}\:{will}\:{delet}\:{the}\:{post}\:…{nevermind}… \\ $$…
Question Number 92729 by M±th+et+s last updated on 08/May/20 $${if}\:{p}_{{n}} \:{is}\:{the}\:{product}\:{of}\:{the}\:{terms}\:{in} \\ $$$${the}\:{nth}\:{row}\:{of}\:{the}\:{pascal}'{s}\:{triangle} \\ $$$${find} \\ $$$$\underset{{n}\rightarrow\infty} {{lim}}\frac{{p}_{{n}−\mathrm{1}} {p}_{{n}+\mathrm{1}} }{\left({p}_{{n}} \right)^{\mathrm{2}} } \\ $$$$ \\…