Menu Close

Category: Limits

find-the-value-of-k-1-n-1-sin-kpi-2n-

Question Number 27153 by abdo imad last updated on 02/Jan/18 $${find}\:{the}\:{value}\:{of}\:\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:{sin}\left(\frac{{k}\pi}{\mathrm{2}{n}}\:\right)\:. \\ $$ Commented by abdo imad last updated on 03/Jan/18 $${let}\:{introduce}\:{the}\:{polynomial}\:{p}\left({x}\right)=\:{x}^{\mathrm{2}{n}} \:−\mathrm{1}\:\:{the}\:{roots}\:{of}\:{p}\left({x}\right)…

lim-x-sin-x-1-sin-x-

Question Number 158204 by tounghoungko last updated on 01/Nov/21 $$\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{sin}\:\sqrt{{x}+\mathrm{1}}−\mathrm{sin}\:\sqrt{{x}\:}\right)\:=? \\ $$ Answered by ajfour last updated on 01/Nov/21 $${L}=\underset{{x}\rightarrow\infty} {\mathrm{lim}2cos}\:\left(\frac{\sqrt{{x}}+\sqrt{{x}+\mathrm{1}}}{\mathrm{2}}\right)\mathrm{sin}\:\left(\frac{\sqrt{{x}+\mathrm{1}}−\sqrt{{x}}}{\mathrm{2}}\right) \\ $$$$=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}2cos}\:\left(\frac{\frac{\mathrm{1}}{\:\sqrt{{h}}}+\frac{\sqrt{{h}+\mathrm{1}}}{\:\sqrt{{h}}}}{\mathrm{2}}\right)\mathrm{sin}\:\left(\frac{\frac{\sqrt{{h}+\mathrm{1}}−\mathrm{1}}{\:\sqrt{{h}}}}{\mathrm{2}}\right)…

1-lim-x-0-e-x-1-sin-x-tan-3-x-arctan-x-ln-1-4x-4arcsin-4-x-2-lim-x-0-1-cos-x-ln-1-tan-2-2x-2arcsin-3-x-1-cos-4x-sin-2-x-

Question Number 158205 by tounghoungko last updated on 01/Nov/21 $$\left(\mathrm{1}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left({e}^{{x}} −\mathrm{1}\right)\mathrm{sin}\:{x}+\mathrm{tan}\:^{\mathrm{3}} {x}}{\mathrm{arctan}\:{x}\:\mathrm{ln}\:\left(\mathrm{1}+\mathrm{4}{x}\right)+\mathrm{4arcsin}^{\mathrm{4}} \:{x}}\: \\ $$$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:{x}+\mathrm{ln}\:\left(\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \mathrm{2}{x}\right)+\mathrm{2arcsin}\:^{\mathrm{3}} \:{x}}{\mathrm{1}−\mathrm{cos}\:\mathrm{4}{x}+\mathrm{sin}\:^{\mathrm{2}} {x}} \\ $$ Terms of Service…

let-give-S-x-n-1-x-n-n-and-W-x-n-1-1-n-x-n-n-2-calculate-S-x-W-x-in-that-we-know-x-lt-1-

Question Number 27098 by abdo imad last updated on 02/Jan/18 $${let}\:{give}\:{S}\left({x}\right)\:=\:\sum_{{n}=\mathrm{1}} ^{\propto} \frac{{x}^{{n}} }{{n}}\:\:{and}\:\:{W}\left({x}\right)=\:\:\sum_{{n}=\mathrm{1}} ^{\propto} \frac{\left(−\mathrm{1}\right)^{{n}} {x}^{{n}} }{{n}^{\mathrm{2}} } \\ $$$${calculate}\:\:\:{S}\left({x}\right).{W}\left({x}\right).\:\:\:{in}\:{that}\:{we}\:{know}\:/{x}/<\mathrm{1}. \\ $$ Commented by…

lim-x-ln-x-x-

Question Number 92577 by jagoll last updated on 08/May/20 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{ln}\:\mathrm{x}}{\mathrm{x}} \\ $$ Commented by Tony Lin last updated on 08/May/20 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{{lnx}}{{x}} \\ $$$$=\underset{{x}\rightarrow\infty}…