Question Number 92239 by jagoll last updated on 05/May/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mid\mathrm{cos}\:\mathrm{7x}\mid}{\mathrm{1}−\mid\mathrm{tan}\:\mathrm{5x}\mid}\:=\: \\ $$ Commented by john santu last updated on 05/May/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \:\mathrm{7x}}{\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} \:\mathrm{5x}}\:×\:\frac{\mathrm{1}+\mid\mathrm{tan}\:\mathrm{5x}\mid}{\mathrm{1}+\mid\mathrm{cos}\:\mathrm{7x}\mid\:}…
Question Number 92214 by hovero clinton last updated on 05/May/20 Commented by mathmax by abdo last updated on 05/May/20 $${for}\:{x}\rightarrow\mathrm{0}^{+} \:\:{we}\:{see}\:\frac{\mathrm{1}}{{lnx}}<\mathrm{0}\:\:\:{so}\:{we}\:{can}\:{t}\:{use}\:{expo}\:…!\:\:{perhaps}\:{the} \\ $$$${Q}\:{is}\:{gind}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:\:\left(−\frac{\mathrm{1}}{{lnx}}\right)^{\frac{\mathrm{1}}{{ln}\left({e}^{{x}}…
Question Number 92167 by john santu last updated on 05/May/20 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{x}−\mathrm{x}^{\mathrm{2}} \mathrm{ln}\:\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}}\right)\:? \\ $$ Commented by mathmax by abdo last updated on 06/May/20 $${we}\:{have}\:{ln}^{'}…
Question Number 157688 by tounghoungko last updated on 26/Oct/21 $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{\mathrm{ln}\:\left({x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\right)}\:−\frac{\mathrm{1}}{\mathrm{ln}\:\left({x}+\mathrm{1}\right)}\:\right)=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 26591 by prakash jain last updated on 27/Dec/17 $$\mathrm{Prove} \\ $$$$\underset{{x}\rightarrow−\mathrm{1}} {\mathrm{lim}}\left(\mathrm{1}+{x}\right)\mathrm{ln}\:\left(\mathrm{1}+{x}\right)=\mathrm{0} \\ $$ Commented by abdo imad last updated on 27/Dec/17 $${let}\:{put}\:\mathrm{1}+{x}={u}\:\:\:\Rightarrow\:{lim}_{{x}−>−\mathrm{1}^{+}…
bonjour-calculer-la-limite-suivante-en-utilisant-les-developpements-limites-lim-x-0-1-x-2-1-sin-2-x-
Question Number 157647 by wendjudi last updated on 26/Oct/21 $${bonjour}\:,{calculer}\:{la}\:{limite}\:{suivante}\:{en}\:{utilisant}\:{les}\:{developpements}\:{limites}: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:−\:\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} {x}}\right). \\ $$ Commented by cortano last updated on 26/Oct/21 $$\:\underset{{x}\rightarrow\mathrm{0}}…
Question Number 26572 by abdo imad last updated on 26/Dec/17 $${find}\:{the}\:{radius}\:{ofconvergence}\:{for}\:{the}\:{serie} \\ $$$$\sum_{{n}\geqslant\mathrm{0}} \left(\:{e}^{\sqrt{{n}+\mathrm{1}}} −{e}^{\sqrt{{n}}} \right){z}^{{n}} \:\:\:\:\:\:{with}\:{z}\:{from}\:\mathbb{C} \\ $$$$ \\ $$ Terms of Service Privacy…
Question Number 26573 by abdo imad last updated on 26/Dec/17 $${let}\:{put}\:\:{H}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{k}={n}} \:\:\frac{\mathrm{1}}{{k}}\:\:\:\:\:\:{prove}\:{that}\:\:\:\sum_{{n}=\mathrm{1}} ^{\propto} \:\frac{{H}_{{n}} }{{n}^{\mathrm{2}} }\:\:=\:\:\mathrm{2}\xi\left(\mathrm{3}\right) \\ $$ Terms of Service Privacy Policy…
Question Number 26568 by abdo imad last updated on 26/Dec/17 $${let}\:{give}\:\xi\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\propto} \frac{\mathrm{1}}{{n}^{{x}} }\:\:{prove}\:{that}\:\xi\left({x}\right)−_{{x}−>\propto} \mathrm{1}\sim\mathrm{2}^{−{x}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 26567 by abdo imad last updated on 26/Dec/17 $${find}\:{the}\:{value}\:{of}\:\:\:\sum_{{n}\geqslant\mathrm{2}} \:\frac{\left(−\right)^{{n}} }{{n}\left({n}−\mathrm{1}\right)}\:{x}^{{n}} \\ $$ Commented by prakash jain last updated on 27/Dec/17 $${a}_{{n}} =\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}}…