Menu Close

Category: Limits

Question-197008

Question Number 197008 by tri26112004 last updated on 06/Sep/23 Answered by AST last updated on 06/Sep/23 $$\frac{{x}^{\mathrm{2}} −{y}^{\mathrm{2}} ={x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }=\mathrm{1}−\frac{\mathrm{2}{y}^{\mathrm{2}} }{{x}^{\mathrm{2}}…

Question-196959

Question Number 196959 by cortano12 last updated on 05/Sep/23 Answered by horsebrand11 last updated on 05/Sep/23 $$\:\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{sin}\:\mathrm{2x}−\mathrm{2x}}{\mathrm{x}^{\mathrm{3}} }\:\right)+\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{ax}+\mathrm{2x}}{\mathrm{x}^{\mathrm{3}} }\right)=\mathrm{1}−\mathrm{b}…

Question-196806

Question Number 196806 by cortano12 last updated on 01/Sep/23 Answered by dimentri last updated on 01/Sep/23 $$\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{1}/\mathrm{6}} \left(\mathrm{2}−\mathrm{2}{x}\right)^{\mathrm{1}/\mathrm{6}} −{x}}{\mathrm{2}{x}\:−{x}\:\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}}{\mathrm{1}+\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} +\mathrm{1}}+\:\sqrt[{\mathrm{3}}]{\left({x}^{\mathrm{3}}…