Menu Close

Category: Limits

lim-x-0-1-tan-x-pi-4-tan-2x-pi-4-tan-pi-4-3x-x-3-

Question Number 154652 by EDWIN88 last updated on 20/Sep/21 $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{tan}\:\left({x}+\frac{\pi}{\mathrm{4}}\right)\mathrm{tan}\:\left(\mathrm{2}{x}+\frac{\pi}{\mathrm{4}}\right)\mathrm{tan}\:\left(\frac{\pi}{\mathrm{4}}−\mathrm{3}{x}\right)}{{x}^{\mathrm{3}} }=? \\ $$ Answered by bramlexs22 last updated on 20/Sep/21 Commented by mnjuly1970 last…

Question-154586

Question Number 154586 by Dadoubleny last updated on 19/Sep/21 Answered by ARUNG_Brandon_MBU last updated on 19/Sep/21 $$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\left({n}+\mathrm{1}\right)^{\alpha} −{n}^{\alpha} \right) \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left({n}^{\alpha} \left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{\alpha} −{n}^{\alpha}…

find-lim-x-0-ln-sin-3x-cos-3x-ln-sin-x-cos-x-

Question Number 88896 by M±th+et£s last updated on 13/Apr/20 $${find}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{ln}\left({sin}\left(\mathrm{3}{x}\right)+{cos}\left(\mathrm{3}{x}\right)\right)}{{ln}\left({sin}\left({x}\right)+{cos}\left({x}\right)\right)} \\ $$ Commented by abdomathmax last updated on 13/Apr/20 $${let}\:{f}\left({x}\right)=\frac{{ln}\left({sin}\left(\mathrm{3}{x}\right)+{cos}\left(\mathrm{3}{x}\right)\right)}{{ln}\left({sinx}+{cosx}\right)}\:\:{we}\:{have} \\ $$$${sin}\left(\mathrm{3}{x}\right)+{cos}\left(\mathrm{3}{x}\right)\sim\mathrm{3}{x}\:+\mathrm{1}−\frac{\left(\mathrm{3}{x}\right)^{\mathrm{2}}…

Question-23348

Question Number 23348 by chernoaguero@gmail.com last updated on 29/Oct/17 Commented by chernoaguero@gmail.com last updated on 29/Oct/17 $$\mathrm{Plzz}\:\mathrm{help}\:\mathrm{me}\:\mathrm{to}\:\mathrm{explain}\:\mathrm{this}\:\mathrm{graph} \\ $$ Terms of Service Privacy Policy Contact:…

lim-x-2-x-2-e-x-4e-2-x-2-

Question Number 154390 by liberty last updated on 18/Sep/21 $$\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\frac{{x}^{\mathrm{2}} {e}^{{x}} −\mathrm{4}{e}^{\mathrm{2}} }{{x}−\mathrm{2}}\:? \\ $$ Commented by puissant last updated on 18/Sep/21 $$=\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\left(\mathrm{2}{xe}^{{x}}…