Menu Close

Category: Limits

lim-x-cos-npi-e-1-2n-

Question Number 153598 by liberty last updated on 08/Sep/21 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}cos}\:\left({n}\pi\:\sqrt[{\mathrm{2}{n}}]{{e}}\:\right)=? \\ $$ Commented by tabata last updated on 08/Sep/21 $$\boldsymbol{{y}}=\:\boldsymbol{{n}\pi}\:\sqrt[{\mathrm{2}\boldsymbol{{n}}}]{\boldsymbol{{e}}}\: \\ $$$$ \\ $$$$\boldsymbol{{lim}}_{\boldsymbol{{y}}\rightarrow\infty}…

L-lim-x-1-2019x-2018-1-x-2019-1-2018-1-then-2-L-

Question Number 153517 by liberty last updated on 08/Sep/21 $$\:\:{L}=\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\sqrt{\mathrm{2019}{x}−\mathrm{2018}}−\mathrm{1}}{\:\sqrt[{\mathrm{2018}}]{{x}^{\mathrm{2019}} }−\mathrm{1}} \\ $$$$\:{then}\:\mathrm{2}×{L}\:=? \\ $$ Commented by MJS_new last updated on 08/Sep/21 $$\mathrm{just}\:“\mathrm{hospitalize}''\:\mathrm{it}\:\Rightarrow\:{L}=\mathrm{1009} \\…

Show-whether-n-1-x-2-3-n-2-x-2-is-uniformly-convegence-for-real-value-of-x-

Question Number 153518 by Tawa11 last updated on 08/Sep/21 $$\mathrm{Show}\:\mathrm{whether}\:\:\:\underset{\mathrm{n}\:\:=\:\:\mathrm{1}} {\overset{\infty} {\sum}}\:\left(\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{3}\:\:\:\:+\:\:\:\mathrm{n}^{\mathrm{2}} \mathrm{x}^{\mathrm{2}} }\right)\:\:\:\:\:\mathrm{is}\:\mathrm{uniformly}\:\mathrm{convegence}\:\mathrm{for}\:\mathrm{real} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{x}. \\ $$ Answered by puissant last updated on…

lim-x-0-1-tan-1-3x-1-3-1-sin-1-3x-1-3-1-sin-1-2x-1-tan-1-2x-

Question Number 153449 by liberty last updated on 07/Sep/21 $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\sqrt[{\mathrm{3}}]{\mathrm{1}+\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{3}{x}\right)}−\sqrt[{\mathrm{3}}]{\mathrm{1}−\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{3}{x}\right)}}{\:\sqrt{\mathrm{1}−\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{2}{x}\right)}−\sqrt{\mathrm{1}+\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2}{x}\right)}}\:=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-22365

Question Number 22365 by A1B1C1D1 last updated on 16/Oct/17 Answered by sma3l2996 last updated on 16/Oct/17 $$=\underset{{x}\rightarrow\infty} {{lim}}\frac{\mathrm{1}−\left(\frac{\mathrm{3}}{\mathrm{5}}\right)^{{x}} +\frac{\mathrm{1}}{\mathrm{5}^{{x}} }}{\mathrm{1}+\left(\frac{\mathrm{3}}{\mathrm{5}}\right)^{{x}} +\frac{\mathrm{1}}{\mathrm{5}^{{x}} {x}}}=\frac{\mathrm{1}−\mathrm{0}+\mathrm{0}}{\mathrm{1}+\mathrm{0}+\mathrm{0}}=\mathrm{1}\:\: \\ $$ Commented…