Question Number 24404 by moxhix last updated on 17/Nov/17 $${put}\:{a}_{{n}} =\:\frac{\mathrm{1}}{\mathrm{2}{n}}\centerdot\frac{\mathrm{3}}{\mathrm{2}{n}}\centerdot\frac{\mathrm{5}}{\mathrm{2}{n}}\centerdot\:…\:\centerdot\frac{\mathrm{2}{n}−\mathrm{1}}{\mathrm{2}{n}}\centerdot{e}^{{n}} \\ $$$$\underset{{n}\rightarrow\infty} {{lim}a}_{{n}} =\:? \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 89922 by student work last updated on 20/Apr/20 Commented by john santu last updated on 20/Apr/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\sqrt{\mathrm{5}−\mathrm{2}{x}^{\mathrm{2}} }\:\leqslant\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{f}\left({x}\right)\:\leqslant\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\sqrt{\mathrm{5}+\mathrm{2}{x}^{\mathrm{2}} } \\…
Question Number 89882 by student work last updated on 19/Apr/20 Answered by Joel578 last updated on 19/Apr/20 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{{x}!\left(\mathrm{1}−\:{x}\:−\:\mathrm{1}\right)}{\left(\mathrm{2}{x}−\mathrm{1}\right){x}!}\:=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{−{x}}{\mathrm{2}{x}−\mathrm{1}}\:=\:−\frac{\mathrm{1}}{\mathrm{2}} \\ $$ Answered by TANMAY…
Question Number 155392 by cortano last updated on 30/Sep/21 $$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\left({a}^{{x}+\mathrm{1}} +{b}^{{x}+\mathrm{1}} \right)^{\mathrm{2}} }{{a}+{b}}\right)^{\frac{\mathrm{1}}{{x}}} =\ldots? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 155357 by mathlove last updated on 29/Sep/21 Commented by mathlove last updated on 30/Sep/21 $${pleas}\:{answer} \\ $$ Answered by qaz last updated on…
Question Number 89712 by thor123 last updated on 18/Apr/20 Commented by mathmax by abdo last updated on 18/Apr/20 $${lim}_{{x}\rightarrow\mathrm{0}} \:\frac{{x}^{\mathrm{2}} −\mathrm{2}^{\mathrm{2}} }{{x}−\mathrm{2}}\:=\frac{−\mathrm{2}^{\mathrm{2}} }{−\mathrm{2}}\:=\mathrm{2} \\ $$…
Question Number 155191 by mathlove last updated on 26/Sep/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 155120 by mnjuly1970 last updated on 25/Sep/21 $$ \\ $$$$\:\:\:{lim}_{\:{x}\:\rightarrow\mathrm{0}} \left(\frac{\mathrm{1}}{{x}^{\:\mathrm{2}} }\:−\:{cot}^{\:\mathrm{2}} \left({x}\right)\right)=? \\ $$$$ \\ $$ Answered by john_santu last updated on…
Question Number 89576 by M±th+et£s last updated on 18/Apr/20 $${is}\:\:\underset{{x}\rightarrow{a}} {{lim}}\lfloor{f}\left({x}\right)\rfloor=\lfloor\underset{{x}\rightarrow{a}\:} {{lim}}\:{f}\left({x}\right)\rfloor\: \\ $$ Commented by mr W last updated on 18/Apr/20 $${i}\:{think}\:{no}. \\ $$$${example}\:{f}\left({x}\right)=\frac{\mathrm{sin}\:{x}}{{x}}…
Question Number 89540 by M±th+et£s last updated on 17/Apr/20 $$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{cos}\left({x}^{\mathrm{2}} \right)−\mathrm{1}+\frac{{x}^{\mathrm{4}} }{\mathrm{2}}}{{x}^{\mathrm{2}} \left({x}−{sin}\left({x}\right)\right)^{\mathrm{2}} } \\ $$ Commented by abdomathmax last updated on 17/Apr/20 $${let}\:{f}\left({x}\right)=\frac{{cos}\left({x}^{\mathrm{2}}…