Menu Close

Category: Limits

lim-x-x-2x-2-x-2x-3-

Question Number 83865 by jagoll last updated on 07/Mar/20 $$\underset{{x}\rightarrow−\infty\:} {\mathrm{lim}}\:\left(\mathrm{x}\sqrt{\mathrm{2x}+\mathrm{2}}−\mathrm{x}\sqrt{\mathrm{2x}+\mathrm{3}}\right) \\ $$ Commented by mr W last updated on 07/Mar/20 $$\mathrm{2}{x}+\mathrm{2}\geqslant\mathrm{0} \\ $$$$\Rightarrow{x}\geqslant−\mathrm{1} \\…

Question-149377

Question Number 149377 by fotosy2k last updated on 05/Aug/21 Answered by john_santu last updated on 05/Aug/21 $$\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{3}.\mathrm{3}^{\mathrm{n}} }{\mathrm{3}^{\mathrm{n}} \left(\mathrm{1}+\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{n}} \right)}=\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{3}}{\mathrm{1}+\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{n}} }=\mathrm{3} \\ $$…

Question-149372

Question Number 149372 by fotosy2k last updated on 05/Aug/21 Answered by john_santu last updated on 05/Aug/21 $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:\left(\mathrm{x}+\mathrm{2sin}\:\mathrm{x}\right)}{\mathrm{sin}\:\mathrm{x}}\:= \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{\mathrm{sin}\:\left(\mathrm{x}+\mathrm{2sin}\:\mathrm{x}\right)}{\mathrm{x}+\mathrm{2sin}\:\mathrm{x}}\:.\:\mathrm{x}+\mathrm{2sin}\:\mathrm{x}}{\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{x}}.\:\mathrm{x}} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{x}+\mathrm{2sin}\:\mathrm{x}}{\mathrm{x}}\:=\:\mathrm{1}+\mathrm{2}=\mathrm{3} \\…

Question-149373

Question Number 149373 by fotosy2k last updated on 05/Aug/21 Answered by john_santu last updated on 05/Aug/21 $$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\mathrm{1}+\frac{\mathrm{3x}}{\mathrm{2}}\right)−\left(\mathrm{1}+\frac{\mathrm{2x}}{\mathrm{2}}\right)}{\mathrm{x}\left(\mathrm{1}+\mathrm{2x}\right)} \\ $$$$=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{\mathrm{x}}{\mathrm{2}}}{\mathrm{x}}\:×\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2x}}=\:\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{1}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$ Commented…

lim-x-1-5-x-1-5-x-1-5-x-1-1-5-x-1-

Question Number 83710 by john santu last updated on 05/Mar/20 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+\sqrt{\mathrm{5}}\right)^{{x}} −\left(\mathrm{1}−\sqrt{\mathrm{5}}\right)^{{x}} }{\left(\mathrm{1}+\sqrt{\mathrm{5}}\right)^{{x}−\mathrm{1}} −\left(\mathrm{1}−\sqrt{\mathrm{5}}\right)^{{x}−\mathrm{1}} }\:=\:? \\ $$ Commented by john santu last updated on…

lim-x-0-tan-x-tan-x-sin-x-sin-x-x-3-x-

Question Number 149251 by john_santu last updated on 04/Aug/21 $$\:\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{\mathrm{tan}\:\mathrm{x}\:\sqrt{\mathrm{tan}\:\mathrm{x}}−\mathrm{sin}\:\mathrm{x}\:\sqrt{\mathrm{sin}\:\mathrm{x}}}{\mathrm{x}^{\mathrm{3}} \:\sqrt{\mathrm{x}}}\:=? \\ $$$$ \\ $$ Answered by dumitrel last updated on 04/Aug/21 $$\underset{{x}\rightarrow\mathrm{0}^{+}…

lim-x-a-x-a-x-a-x-2-a-2-

Question Number 149239 by john_santu last updated on 04/Aug/21 $$\:\:\:\underset{{x}\rightarrow\mathrm{a}^{+} } {\mathrm{lim}}\:\frac{\sqrt{\mathrm{x}}−\sqrt{\mathrm{a}}\:−\sqrt{\mathrm{x}−\mathrm{a}}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} }}\:=?\: \\ $$ Answered by EDWIN88 last updated on 04/Aug/21 $$\:\underset{{x}\rightarrow{a}^{+} }…

lim-x-tan-pix-1-2x-2-x-1-

Question Number 83690 by jagoll last updated on 05/Mar/20 $$\underset{{x}\rightarrow\infty\:} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\left(\frac{\pi{x}+\mathrm{1}}{\mathrm{2}{x}+\mathrm{2}}\right)}{{x}+\mathrm{1}}\:=\:? \\ $$ Commented by mathmax by abdo last updated on 05/Mar/20 $${let}\:{f}\left({x}\right)=\frac{{tan}\left(\frac{\pi{x}+\mathrm{1}}{\mathrm{2}{x}+\mathrm{2}}\right)}{{x}+\mathrm{1}}\:\Rightarrow{f}\left({x}\right)=\frac{{tan}\left(\frac{\pi}{\mathrm{2}}×\frac{{x}+\frac{\mathrm{1}}{\pi}}{{x}+\mathrm{1}}\right)}{{x}+\mathrm{1}} \\ $$$$=\frac{{tan}\left(\frac{\pi}{\mathrm{2}}×\left(\frac{{x}+\mathrm{1}\:+\frac{\mathrm{1}}{\pi}−\mathrm{1}}{{x}+\mathrm{1}}\right)\right)}{{x}+\mathrm{1}}\:=\frac{{tan}\left(\frac{\pi}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}−\pi}{\pi\left({x}+\mathrm{1}\right)}\right)\right.}{{x}+\mathrm{1}}…