Menu Close

Category: Limits

q-n-n-0-cos-x-2-n-i-study-the-variation-of-q-n-ii-show-that-cosx-sin2x-2sinx-x-0-pi-2-iii-deduce-that-q-n-1-2-n-1-sin2x-sin-x-2-n-iv-lim-n-q-n-v-s

Question Number 147528 by alcohol last updated on 21/Jul/21 $${q}_{{n}} =\underset{{n}=\mathrm{0}} {\overset{\infty} {\prod}}{cos}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right) \\ $$$$\left.{i}\right)\:{study}\:{the}\:{variation}\:{of}\:{q}_{{n}} \\ $$$$\left.{ii}\right) \\ $$$$\:{show}\:{that}\:{cosx}=\frac{{sin}\mathrm{2}{x}}{\mathrm{2}{sinx}}\:,\:\forall{x}\in\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right] \\ $$$$\left.{iii}\right) \\ $$$${deduce}\:{that}\:{q}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}^{{n}+\mathrm{1}}…

Question-147412

Question Number 147412 by vvvv last updated on 20/Jul/21 Answered by puissant last updated on 21/Jul/21 $$={lim}_{{k}\rightarrow\infty} \frac{\mathrm{1}}{{k}}\underset{{n}=\mathrm{1}} {\overset{{k}} {\sum}}\frac{{n}^{\mathrm{2}} +\mathrm{3}{nk}+\mathrm{9}{k}^{\mathrm{2}} {sin}\left(\frac{{n}}{{k}}\right)}{{k}^{\mathrm{2}} } \\ $$$$={lim}_{{k}\rightarrow\infty}…

lim-x-0-x-1-cos-x-x-2-x-e-x-sin-x-

Question Number 147349 by bramlexs22 last updated on 20/Jul/21 $$\:\:\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{x}\right)}{\mathrm{x}^{\mathrm{2}} +\mathrm{x}−\mathrm{e}^{\mathrm{x}} \:\mathrm{sin}\:\mathrm{x}}\:=? \\ $$ Commented by bramlexs22 last updated on 20/Jul/21 Commented by EDWIN88…

1-lim-x-pi-2-cos-4x-cos-2x-2-2x-pi-2-2-lim-x-0-sin-3x-sin-6x-sin-9x-x-3-3-lim-x-pi-4-sec-2-x-2tan-x-x-pi-4-2-4-lim-x-0-12-6x-2-12cos-x-x-4-5-lim-x-

Question Number 147093 by liberty last updated on 18/Jul/21 $$\left(\mathrm{1}\right)\underset{{x}\rightarrow\pi/\mathrm{2}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\mathrm{4}{x}−\mathrm{cos}\:\mathrm{2}{x}−\mathrm{2}}{\left(\mathrm{2}{x}−\pi\right)^{\mathrm{2}} }\:=? \\ $$$$\left(\mathrm{2}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:\mathrm{3}{x}+\mathrm{sin}\:\mathrm{6}{x}−\mathrm{sin}\:\mathrm{9}{x}}{{x}^{\mathrm{3}} }\:=? \\ $$$$\left(\mathrm{3}\right)\underset{{x}\rightarrow\pi/\mathrm{4}} {\mathrm{lim}}\frac{\mathrm{sec}\:^{\mathrm{2}} {x}−\mathrm{2tan}\:{x}}{\left({x}−\frac{\pi}{\mathrm{4}}\right)^{\mathrm{2}} }\:=? \\ $$$$\left(\mathrm{4}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{12}−\mathrm{6}{x}^{\mathrm{2}} −\mathrm{12cos}\:{x}}{{x}^{\mathrm{4}}…

prove-that-1-1-1-1-1-1-1-1-1-1-1-

Question Number 147071 by alcohol last updated on 17/Jul/21 $${prove}\:{that} \\ $$$$\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+…}}}}\:=\:\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\ddots}}} \\ $$ Answered by Olaf_Thorendsen last updated on 17/Jul/21 $$\varphi^{\mathrm{2}} \:=\:\varphi+\mathrm{1}\:\left({golden}\:{ratio}\:\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right) \\ $$$$\Rightarrow\:\varphi\:=\:\mathrm{1}+\frac{\mathrm{1}}{\varphi}…