Menu Close

Category: Limits

lim-x-0-2-tan-x-sin-x-x-3-x-5-

Question Number 131371 by EDWIN88 last updated on 04/Feb/21 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}\left(\mathrm{tan}\:{x}−\mathrm{sin}\:{x}\right)−{x}^{\mathrm{3}} }{{x}^{\mathrm{5}} }\:=? \\ $$ Answered by liberty last updated on 04/Feb/21 $$\mathrm{let}\:\mathrm{x}\:=\:\mathrm{2t}\: \\ $$$$\mathrm{L}=\underset{\mathrm{t}\rightarrow\mathrm{0}}…

lim-x-4x-4-6x-2-x-4x-2-2-

Question Number 131370 by EDWIN88 last updated on 10/Feb/21 $$\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\sqrt{\mathrm{4}{x}^{\mathrm{4}} +\mathrm{6}{x}^{\mathrm{2}} }\:+{x}\sqrt{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{2}}\:=? \\ $$ Answered by JDamian last updated on 04/Feb/21 $$\infty \\…

Evaluate-lim-x-pi-4-cos-x-sin-x-pi-4-x-cos-x-sin-x-

Question Number 280 by arnav last updated on 25/Jan/15 $$\mathrm{Evaluate}\:\underset{{x}\rightarrow\pi/\mathrm{4}} {\mathrm{lim}}\frac{\mathrm{cos}\:{x}−\mathrm{sin}\:{x}}{\left(\pi/\mathrm{4}−{x}\right)\left(\mathrm{cos}\:{x}+\mathrm{sin}\:{x}\right)} \\ $$ Answered by 123456 last updated on 18/Dec/14 $$\underset{{x}\rightarrow\pi/\mathrm{4}} {\mathrm{lim}}\frac{\mathrm{cos}\:{x}−\mathrm{sin}\:{x}}{\left(\frac{\pi}{\mathrm{4}}−{x}\right)\left(\mathrm{cos}\:{x}+\mathrm{sin}\:{x}\right)}\rightarrow\frac{\mathrm{0}}{\mathrm{0}} \\ $$$$=\underset{{x}\rightarrow\pi/\mathrm{4}} {\mathrm{lim}}\frac{−\mathrm{sin}\:{x}−\mathrm{cos}\:{x}}{−\left(\mathrm{cos}\:{x}+\mathrm{sin}\:{x}\right)+\left(\frac{\pi}{\mathrm{4}}−{x}\right)\left(−\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right)}…

Question-131328

Question Number 131328 by rs4089 last updated on 03/Feb/21 Commented by MJS_new last updated on 04/Feb/21 $$\mathrm{really}? \\ $$$$\mathrm{just}\:\mathrm{try}\:\mathrm{some}\:\mathrm{values}\:\mathrm{with}\:{n}={k}^{\mathrm{2}} \wedge{k}\in\mathbb{N} \\ $$$${y}_{{k}} =\frac{\left(\mathrm{2}{k}^{\mathrm{2}} \right)!}{\mathrm{2}^{{k}} }…

lim-x-0-sin-x-arcsin-x-

Question Number 222 by 123456 last updated on 25/Jan/15 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:{x}}{\mathrm{arcsin}\:{x}} \\ $$ Answered by ghosea last updated on 16/Dec/14 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:{x}}{\mathrm{arcsin}\:{x}} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:{x}}{{x}}\centerdot\frac{{x}}{\mathrm{arcsin}\:{x}}…

Question-65700

Question Number 65700 by Masumsiddiqui399@gmail.com last updated on 02/Aug/19 Commented by Prithwish sen last updated on 02/Aug/19 $$=\mathrm{lim}_{\mathrm{n}\rightarrow\infty} \frac{\mathrm{1}}{\mathrm{n}}\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{1}} {\sum}}\frac{\mathrm{1}}{\left[\mathrm{1}+\left(\frac{\mathrm{k}}{\mathrm{n}}\right)^{\mathrm{2}} \right]}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{dx}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:=\:\mathrm{tan}^{−\mathrm{1}}…

lim-x-0-1-x-tan-pi-2-x-

Question Number 131181 by john_santu last updated on 02/Feb/21 $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}}{{x}}\:−\:\mathrm{tan}\:\left(\frac{\pi}{\mathrm{2}}−{x}\right)\right)=? \\ $$ Answered by Ar Brandon last updated on 02/Feb/21 $$\mathscr{L}=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}}{{x}}\:−\:\mathrm{tan}\:\left(\frac{\pi}{\mathrm{2}}−{x}\right)\right)=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}}{\mathrm{x}}−\mathrm{cotx}\right) \\…

lim-x-x-2-cot-1-x-4cot-1-x-3x-2-2x-

Question Number 131156 by EDWIN88 last updated on 02/Feb/21 $$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{{x}^{\mathrm{2}} \mathrm{cot}\:\left(\frac{\mathrm{1}}{{x}}\right)+\mathrm{4cot}\:\left(\frac{\mathrm{1}}{{x}}\right)}{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}{x}}\:? \\ $$ Answered by john_santu last updated on 02/Feb/21 $$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{{x}^{\mathrm{2}} +\mathrm{4}}{{x}\left(\mathrm{3}{x}+\mathrm{2}\right).\mathrm{tan}\:\left(\frac{\mathrm{1}}{{x}}\right)}\:=\:…

lim-h-0-e-2-2-x-e-2-2-h-e-2-2-x-h-

Question Number 131079 by mathlove last updated on 01/Feb/21 $$\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{e}^{\mathrm{2}\sqrt{\mathrm{2}}{x}} {e}^{\mathrm{2}\sqrt{\mathrm{2}}{h}} −{e}^{\mathrm{2}\sqrt{\mathrm{2}}{x}} }{{h}}=? \\ $$ Commented by EDWIN88 last updated on 01/Feb/21 $$\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{e}^{\mathrm{2}\sqrt{\mathrm{2}}\:\left({x}+{h}\right)}…