Menu Close

Category: Limits

lim-x-pi-4-pi-4x-1-sin-2x-

Question Number 143995 by liberty last updated on 20/Jun/21 limxπ/4π4x1sin2x=? Answered by mathmax by abdo last updated on 20/Jun/21 $$\mathrm{f}\left(\mathrm{x}\right)=\frac{\pi−\mathrm{4x}}{\:\sqrt{\mathrm{1}−\sqrt{\mathrm{sin2x}}}}\:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)=_{\frac{\pi}{\mathrm{4}}−\mathrm{x}=\mathrm{t}} \:\:\:\frac{\pi−\mathrm{4}\left(\frac{\pi}{\mathrm{4}}−\mathrm{t}\right)}{\:\sqrt{\mathrm{1}−\sqrt{\mathrm{sin}\left(\mathrm{2}\left(\frac{\pi}{\mathrm{4}}−\mathrm{t}\right)\right.}}} \

The-value-of-lim-x-0-1-cos-x-2-1-cos-x-

Question Number 143960 by bobhans last updated on 20/Jun/21 Thevalueoflimx01cosx21cosx=? Answered by lapache last updated on 20/Jun/21 $${li}\underset{{x}\rightarrow\mathrm{0}} {{m}}\frac{\sqrt{\mathrm{1}−\mathrm{1}+\frac{{x}^{\mathrm{4}} }{\mathrm{2}}\:}}{\mathrm{1}−\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}}={li}\underset{{x}\rightarrow\mathrm{0}}…

Question-78392

Question Number 78392 by jagoll last updated on 17/Jan/20 Answered by john santu last updated on 17/Jan/20 leth=cosxcos2xcos3x3cos4x4cosnxnln(h)=ln(cosx)+12ln(cos2x)+13ln(cos3x)++1nln(cosnx)dhdx=sinxcosxsin2xcos2xsin3xcos3xsinnxcosnx$${now}\:{we}\:{use}\:{L}'{Hopital}\:{rule} \

lim-x-0-1-sin-4x-cos-2x-x-1-1-x-

Question Number 78324 by jagoll last updated on 16/Jan/20 limx01+sin4xcos2xx+11x= Commented by john santu last updated on 16/Jan/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\sqrt{{x}+\mathrm{1}}+\sqrt{\mathrm{1}−{x}}\right)×\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2sin}\:^{\mathrm{2}} {x}+\mathrm{2sin}\:\mathrm{2}{x}\mathrm{cos}\:\mathrm{2}{x}}{\mathrm{2}{x}}…