Menu Close

Category: Limits

lim-x-0-8x-6x-sin-x-sin-2x-x-5-

Question Number 143252 by bramlexs22 last updated on 12/Jun/21 $$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{8}{x}−\mathrm{6}{x}\:\mathrm{sin}\:{x}+\mathrm{sin}\:\mathrm{2}{x}}{{x}^{\mathrm{5}} }\:=? \\ $$ Answered by Olaf_Thorendsen last updated on 12/Jun/21 $$\frac{\mathrm{8}{x}−\mathrm{6}{x}\mathrm{sin}{x}+\mathrm{sin2}{x}}{{x}^{\mathrm{5}} }\:\underset{\mathrm{0}} {\sim}\:\frac{\mathrm{8}{x}−\mathrm{6}{x}^{\mathrm{2}} +\mathrm{2}{x}}{{x}^{\mathrm{5}}…

lim-x-y-x-n-y-n-x-y-

Question Number 12062 by tawa last updated on 10/Apr/17 $$\underset{{x}\rightarrow\mathrm{y}} {\mathrm{lim}}\:\:\frac{\mathrm{x}^{\mathrm{n}} \:−\:\mathrm{y}^{\mathrm{n}} }{\mathrm{x}\:−\:\mathrm{y}} \\ $$ Answered by ajfour last updated on 11/Apr/17 $$\boldsymbol{{x}}^{\boldsymbol{{n}}} −\boldsymbol{{y}}^{\boldsymbol{{n}}} =\left(\boldsymbol{{x}}−\boldsymbol{{y}}\right)\left(\boldsymbol{{x}}^{\boldsymbol{{n}}−\mathrm{1}}…

lim-x-0-1-x-2-1-3-1-2x-1-4-x-x-2-lim-x-1-7-x-2-1-3-3-x-2-x-1-

Question Number 143064 by EDWIN88 last updated on 09/Jun/21 $$\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:−\sqrt[{\mathrm{4}}]{\mathrm{1}−\mathrm{2x}}}{\mathrm{x}+\mathrm{x}^{\mathrm{2}} }\:=? \\ $$$$\:\:\:\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{7}+\mathrm{x}^{\mathrm{2}} }−\sqrt{\mathrm{3}+\mathrm{x}^{\mathrm{2}} }}{\mathrm{x}−\mathrm{1}}\:=? \\ $$ Answered by bramlexs22 last updated…

lim-x-1-sin-x-1-2x-x-2-3-

Question Number 142922 by mathlove last updated on 07/Jun/21 $$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\mathrm{sin}\left({x}+\mathrm{1}\right)}{\mathrm{2}{x}−\sqrt{{x}^{\mathrm{2}} +\mathrm{3}}}=? \\ $$ Answered by Olaf_Thorendsen last updated on 07/Jun/21 $$\frac{\mathrm{sin}\left({x}+\mathrm{1}\right)}{\mathrm{2}{x}−\sqrt{{x}^{\mathrm{2}} +\mathrm{3}}}\:=\:\frac{\mathrm{sin}\left({x}+\mathrm{1}\right).\left(\mathrm{2}{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{3}}\right)}{\mathrm{4}{x}^{\mathrm{2}} −\left({x}^{\mathrm{2}}…