Question Number 73406 by Rio Michael last updated on 11/Nov/19 $${Use}\:{the}\:{Sandwich}\left(\:{Pinchin}\:{or}\:{Squeez}\:\right)\:{theorem}\:{to}\:{prove} \\ $$$${that}\: \\ $$$$\:\underset{{x}\rightarrow{a}} {\mathrm{Lim}}\:\sqrt{{x}}\:=\:\sqrt{{a}}\: \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 73251 by aliesam last updated on 09/Nov/19 Answered by mind is power last updated on 09/Nov/19 $$\mathrm{E}\left(\mathrm{u}_{\mathrm{n}} \right)\leqslant\mathrm{u}_{\mathrm{n}} <\mathrm{E}\left(\mathrm{u}_{\mathrm{n}} \right)+\mathrm{1}=\mathrm{U}_{\mathrm{n}+\mathrm{1}} \\ $$$$\Rightarrow\mathrm{U}_{\mathrm{n}} \mathrm{is}\:\mathrm{a}\:\mathrm{creasing}\:\mathrm{squances}…
Question Number 138765 by 676597498 last updated on 18/Apr/21 Commented by 676597498 last updated on 18/Apr/21 $${please}\:{help} \\ $$ Answered by physicstutes last updated on…
Question Number 138767 by bramlexs22 last updated on 18/Apr/21 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\left(\pi\mathrm{cos}\:^{\mathrm{2}} {x}\right)}{\mathrm{sin}\:\left(\mathrm{2}\pi\mathrm{sin}\:^{\mathrm{2}} {x}\right)}\:=? \\ $$ Answered by EDWIN88 last updated on 18/Apr/21 $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\left(\pi\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}\right)}{\mathrm{sin}\:\left(\mathrm{2}\pi\mathrm{sin}\:^{\mathrm{2}}…
Question Number 73223 by malwaan last updated on 08/Nov/19 $$\boldsymbol{{lim}}\:\frac{\mathrm{0}}{\infty}\:\overset{?} {=}\:\mathrm{0}\:? \\ $$$$\boldsymbol{{lim}}\:\frac{\infty}{\mathrm{0}}\:\overset{?} {=}\:\infty\:? \\ $$ Commented by MJS last updated on 08/Nov/19 $$\mathrm{these}\:\mathrm{are}\:\mathrm{not}\:\mathrm{of}\:\mathrm{correct}\:\mathrm{syntax}\:\Rightarrow\:\mathrm{we}\:\mathrm{cannot} \\…
Question Number 73200 by aliesam last updated on 07/Nov/19 $${if}\:\: \\ $$$$ \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}^{+} } {{lim}f}\left({x}\right)=+\infty \\ $$$$ \\ $$$$\underset{{x}\rightarrow\mathrm{0}^{−} } {{lim}f}\left({x}\right)=+\infty \\ $$$$ \\…
Question Number 138734 by Ajaypareek last updated on 17/Apr/21 Commented by Ajaypareek last updated on 17/Apr/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 138735 by SanyamJoshi last updated on 17/Apr/21 Answered by Ajaypareek last updated on 17/Apr/21 $$\mathrm{1} \\ $$ Answered by bramlexs22 last updated on…
Question Number 138708 by liberty last updated on 16/Apr/21 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:{x}−\mathrm{tan}\:{x}}{\left(\sqrt[{\mathrm{3}}]{\mathrm{1}+{x}^{\mathrm{2}} }−\mathrm{1}\right)\left(\sqrt{\mathrm{1}+\mathrm{sin}\:{x}}−\mathrm{1}\right)}=? \\ $$ Answered by bramlexs22 last updated on 17/Apr/21 Terms of Service Privacy…
Question Number 73117 by aliesam last updated on 06/Nov/19 Commented by mathmax by abdo last updated on 06/Nov/19 $${we}\:{have}\:{cos}\left(\mathrm{3}{x}\right)\sim\mathrm{1}−\frac{\left(\mathrm{3}{x}\right)^{\mathrm{2}} }{\mathrm{2}}\:\:\left({x}\rightarrow\mathrm{0}\right)\:\Rightarrow{cos}\left(\mathrm{3}{x}\right)−\mathrm{1}\:\sim−\frac{\mathrm{9}{x}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow \\ $$$$\mathrm{1}−{cos}\left(\mathrm{3}{x}\right)\sim\frac{\mathrm{9}{x}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow\frac{\mathrm{1}−{cos}\left(\mathrm{3}{x}\right)}{{x}^{\mathrm{2}} }\sim\frac{\mathrm{9}}{\mathrm{2}}\:\Rightarrow{lim}_{{x}\rightarrow\mathrm{0}}…