Menu Close

Category: Limits

Question-73117

Question Number 73117 by aliesam last updated on 06/Nov/19 Commented by mathmax by abdo last updated on 06/Nov/19 $${we}\:{have}\:{cos}\left(\mathrm{3}{x}\right)\sim\mathrm{1}−\frac{\left(\mathrm{3}{x}\right)^{\mathrm{2}} }{\mathrm{2}}\:\:\left({x}\rightarrow\mathrm{0}\right)\:\Rightarrow{cos}\left(\mathrm{3}{x}\right)−\mathrm{1}\:\sim−\frac{\mathrm{9}{x}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow \\ $$$$\mathrm{1}−{cos}\left(\mathrm{3}{x}\right)\sim\frac{\mathrm{9}{x}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow\frac{\mathrm{1}−{cos}\left(\mathrm{3}{x}\right)}{{x}^{\mathrm{2}} }\sim\frac{\mathrm{9}}{\mathrm{2}}\:\Rightarrow{lim}_{{x}\rightarrow\mathrm{0}}…

1-2pii-lim-T-iT-iT-e-st-s-a-ds-

Question Number 138603 by Ar Brandon last updated on 15/Apr/21 $$\frac{\mathrm{1}}{\mathrm{2}\pi\mathrm{i}}\underset{\mathrm{T}\rightarrow\infty} {\mathrm{lim}}\underset{\gamma−\mathrm{iT}} {\overset{\gamma+\mathrm{iT}} {\int}}\frac{\mathrm{e}^{\mathrm{st}} }{\mathrm{s}−\mathrm{a}}\mathrm{ds} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

lim-x-0-1-cot-2x-2tan-2x-

Question Number 138576 by liberty last updated on 15/Apr/21 $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{1}+\mathrm{cot}\:\mathrm{2}{x}\right)^{\mathrm{2tan}\:\mathrm{2}{x}} \:=?\: \\ $$ Answered by phanphuoc last updated on 15/Apr/21 $${li}\underset{{u}\left({x}\right)−>\mathrm{0}} {{m}}\left(\mathrm{1}+{u}\left({x}\right)\right)^{\mathrm{1}/{u}\left({x}\right)} ={e} \\…

n-0-1-2n-e-

Question Number 138437 by EnterUsername last updated on 13/Apr/21 $$\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2n}\right)!!}=\sqrt{\mathrm{e}} \\ $$ Answered by Ar Brandon last updated on 13/Apr/21 $$\:\:\:\:\:\left(\mathrm{2n}\right)!!=\mathrm{2n}\left(\mathrm{2n}−\mathrm{2}\right)\left(\mathrm{2n}−\mathrm{4}\right)…\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}^{\mathrm{n}}…

f-x-0-and-lim-x-a-f-x-0-lim-x-a-g-x-then-lim-x-a-f-x-g-x-

Question Number 72905 by Tony Lin last updated on 04/Nov/19 $${f}\left({x}\right)\geqslant\mathrm{0},\:{and}\:\underset{{x}\rightarrow{a}} {\mathrm{lim}}{f}\left({x}\right)=\mathrm{0},\underset{{x}\rightarrow{a}} {\mathrm{lim}}{g}\left({x}\right)=\infty \\ $$$${then}\:\underset{{x}\rightarrow{a}} {\mathrm{lim}}{f}\left({x}\right)^{{g}\left({x}\right)} =? \\ $$ Commented by mathmax by abdo last…