Question Number 6247 by Yozzii last updated on 20/Jun/16 $${Show}\:{that},\:\forall{x}\in\mathbb{R},\:{the}\:{sequence}\:\left\{{f}\left({n}\right)\right\}_{\mathrm{0}} ^{\infty} \\ $$$${defined}\:{by}\:{f}\left(\mathrm{0}\right)={cosx},\:{f}\left(\mathrm{1}\right)={sin}\left({cosx}\right)\:{and} \\ $$$${f}\left({n}\right)=\begin{cases}{{sin}\left({cos}\left({f}\left({n}−\mathrm{2}\right)\right)\right)\:\:{if}\:{n}\geqslant\mathrm{3}\:{is}\:{odd}}\\{{cos}\left({sin}\left({f}\left({n}−\mathrm{2}\right)\right)\right)\:\:{if}\:{n}\geqslant\mathrm{2}\:{is}\:{even},}\end{cases} \\ $$$${converges}\:{to}\:{a}\:{limit}\:{l}\in\left(\mathrm{0}.\mathrm{6},\mathrm{0}.\mathrm{7}\right). \\ $$$${If}\:{you}\:{can},\:{determine}\:{the}\:{exact}\:{value} \\ $$$${of}\:{l}. \\ $$ Commented by…
Question Number 71777 by Henri Boucatchou last updated on 19/Oct/19 $$\:\:\underset{\boldsymbol{{n}}\rightarrow\infty} {\boldsymbol{{lim}}}\:\left(\frac{\boldsymbol{{n}}!\:+\:\mathrm{3}^{\boldsymbol{{n}}} }{\boldsymbol{{n}}^{\boldsymbol{{n}}} \:+\:\mathrm{3}^{\boldsymbol{{n}}} }\right)\:=\:? \\ $$ Commented by mathmax by abdo last updated on…
Question Number 71767 by psyche last updated on 19/Oct/19 $${Let}\:{f}\:{be}\:{continuous}\:{on}\:{a}\:{closed}\:{and}\:{bounded}\:{subset}\:{E},\:{then}\:{show}\:{that}\:{f}\:{is}\:{uniformly}\:{continuous}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 71739 by Tony Lin last updated on 19/Oct/19 $${find}\:{the}\:{asymptote}\:{of}\:{folium}\:{of}\: \\ $$$${Descartes}\:{x}^{\mathrm{3}} +{y}^{\mathrm{3}} =\mathrm{3}{axy},\:{and}\:{a}\:{is}\:{a} \\ $$$${constant}\:>\mathrm{0} \\ $$ Answered by Tony Lin last updated…
Question Number 6189 by enigmeyou last updated on 17/Jun/16 $$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\lfloor{x}^{\lfloor{xlnx}\rfloor} \rfloor=? \\ $$ Commented by FilupSmith last updated on 18/Jun/16 $$\lfloor{x}\rfloor\:\mathrm{is}\:\mathrm{only}\:\mathrm{really}\:\mathrm{applicable}\:\mathrm{for}\:\mathrm{non} \\ $$$$\mathrm{integers}.\:\lfloor{x}\mathrm{ln}{x}\rfloor\:\mathrm{is}\:\mathrm{only}\:\mathrm{applicable}\:\mathrm{if} \\…
Question Number 137255 by Nith last updated on 31/Mar/21 Answered by Dwaipayan Shikari last updated on 31/Mar/21 $${sinx}\sim{x} \\ $$$$\mathrm{2}^{{sinx}} \sim\mathrm{2}^{{x}} \sim\mathrm{1}+{xlog}\left(\mathrm{2}\right) \\ $$$$\mathrm{3}^{{sinx}} \sim\mathrm{1}+{xlog}\left(\mathrm{3}\right)…
Question Number 71649 by TawaTawa last updated on 18/Oct/19 Commented by mathmax by abdo last updated on 18/Oct/19 $$\sum_{{n}=\mathrm{1}} ^{\left[{x}\right]} \sqrt{{n}}=\mathrm{1}+\sqrt{\mathrm{2}}+\sqrt{\mathrm{3}}+…+\sqrt{\left[{x}\right]} \\ $$$$\frac{\mathrm{2}}{\mathrm{3}}\sqrt{\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{3}} }=\frac{\mathrm{2}}{\mathrm{3}}\sqrt{{x}^{\mathrm{3}} \left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{x}}\right)^{\mathrm{3}}…
Question Number 137157 by mathlove last updated on 30/Mar/21 Commented by mathlove last updated on 30/Mar/21 $${with}\:{out}\:{macloreen}\:{sirees}\:{and}\:{H}-{pital}\:{rools} \\ $$ Commented by mathlove last updated on…
Question Number 71513 by aliesam last updated on 16/Oct/19 Commented by kaivan.ahmadi last updated on 16/Oct/19 $$×\frac{\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}+\sqrt{{x}−\mathrm{1}}}{\:\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}+\sqrt{{x}−\mathrm{1}}}={lim}_{{x}\rightarrow+\infty} \frac{{x}^{\mathrm{2}} +\mathrm{2}}{\:\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}+\sqrt{{x}−\mathrm{1}}}= \\ $$$$\equiv{lim}_{{x}\rightarrow+\infty} \frac{{x}^{\mathrm{2}}…
Question Number 71362 by malwaan last updated on 14/Oct/19 $$\boldsymbol{\mathrm{please}}\:\boldsymbol{{prove}}\:\boldsymbol{{that}} \\ $$$$\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{{lim}}}\frac{\boldsymbol{{x}}−\boldsymbol{{sinx}}}{\boldsymbol{{x}}^{\mathrm{3}} }\:=\frac{\mathrm{1}}{\mathrm{6}}\:\boldsymbol{{by}}\:\boldsymbol{{using}} \\ $$$$\boldsymbol{{x}}=\mathrm{3}\boldsymbol{{y}}\:\boldsymbol{{and}}\: \\ $$$$\boldsymbol{{sin}}\mathrm{3}\boldsymbol{{y}}=\mathrm{3}\boldsymbol{{siny}}−\mathrm{4}\boldsymbol{{sin}}^{\mathrm{3}} \boldsymbol{{y}} \\ $$ Terms of Service Privacy…