Menu Close

Category: Limits

Question-71096

Question Number 71096 by Omer Alattas last updated on 11/Oct/19 Answered by $@ty@m123 last updated on 11/Oct/19 $${Let}\:{x}=\mathrm{1}+{y} \\ $$$$\underset{{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\:\:\frac{{y}}{\mathrm{ln}\:\left(\mathrm{1}+{y}\right)} \\ $$$$\:\:\frac{\mathrm{1}}{\underset{{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{ln}\:\left(\mathrm{1}+{y}\right)}{{y}}}=\mathrm{1} \\…

Sum-the-following-series-to-infinity-1-1-k-x-1-k-k-2-x-2-x-and-k-being-proper-fractions-

Question Number 5427 by Rasheed Soomro last updated on 14/May/16 $$\mathrm{Sum}\:\mathrm{the}\:\mathrm{following}\:\mathrm{series}\:\mathrm{to}\:\mathrm{infinity}: \\ $$$$\mathrm{1}+\left(\mathrm{1}+\mathrm{k}\right)\mathrm{x}+\left(\mathrm{1}+\mathrm{k}+\mathrm{k}^{\mathrm{2}} \right)\mathrm{x}^{\mathrm{2}} +… \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{x}\:\:\:\mathrm{and}\:\:\:\:\mathrm{k}\:\:\:\mathrm{being}\:\mathrm{proper}\:\mathrm{fractions}. \\ $$ Commented by Yozzii last updated on…

Question-70913

Question Number 70913 by TawaTawa last updated on 09/Oct/19 Commented by mathmax by abdo last updated on 10/Oct/19 $${we}\:{have}\:\frac{{z}^{\mathrm{2017}} −\mathrm{1}}{{z}−\mathrm{1}}\:=\prod_{{k}=\mathrm{1}} ^{\mathrm{2016}} \left({z}−{e}^{\frac{{i}\mathrm{2}{k}\pi}{\mathrm{2017}}} \right) \\ $$$${z}=−\mathrm{1}\:\Rightarrow\mathrm{1}\:=\prod_{{k}=\mathrm{1}}…