Menu Close

Category: Limits

lim-x-0-e-1-sinx-e-1-tanx-tanx-sinx-

Question Number 4712 by paonky last updated on 28/Feb/16 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{e}^{\mathrm{1}−\mathrm{sin}{x}} −{e}^{\mathrm{1}−\mathrm{tan}{x}} }{\mathrm{tan}{x}−\mathrm{sin}{x}}=? \\ $$ Answered by Yozzii last updated on 28/Feb/16 $${Let}\:{l}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{e}^{\mathrm{1}−{sinx}} −{e}^{\mathrm{1}−{tanx}}…

4-cos-4-x-2-3ax-5tan-x-dx-

Question Number 4681 by thachan last updated on 21/Feb/16 $$\int_{\mathrm{4}} ^{\mathrm{cos}\:\underset{\mathrm{4}} {\prod}} \left({x}^{\mathrm{2}} +\mathrm{3}{ax}−\mathrm{5tan}\:\left({x}\right)\right){dx} \\ $$ Commented by prakash jain last updated on 21/Feb/16 $${is}\:{the}\:{upper}\:{limit}\:\mathrm{cos}\:\frac{\pi}{\mathrm{4}}?…

x-2-5x-2-0-

Question Number 4674 by thachan last updated on 20/Feb/16 $${x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{2}=\mathrm{0} \\ $$ Answered by FilupSmith last updated on 20/Feb/16 $${x}=\frac{−{b}\pm\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}}{\mathrm{2}{a}} \\ $$$${x}=\frac{−\mathrm{5}\pm\sqrt{\mathrm{25}−\mathrm{4}\left(\mathrm{1}\right)\left(\mathrm{2}\right)}}{\mathrm{2}\left(\mathrm{1}\right)} \\…

L-lim-i-1-i-1-i-i-1-L-

Question Number 4587 by FilupSmith last updated on 09/Feb/16 $${L}=\underset{{i}\rightarrow\infty} {\mathrm{lim}}\:\frac{\left(−\mathrm{1}\right)^{{i}+\mathrm{1}} {i}}{{i}+\mathrm{1}} \\ $$$${L}=? \\ $$ Commented by Yozzii last updated on 14/Feb/16 $${L}\:{does}\:{not}\:{exist}.\:{While}\:\mid{L}\mid=\underset{{i}\rightarrow\infty} {\mathrm{lim}}\frac{{i}}{{i}+\mathrm{1}}…

k-1-k-k-1-2-8-

Question Number 135571 by bemath last updated on 14/Mar/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{{k}}{\left({k}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{8}}\:=? \\ $$ Commented by EDWIN88 last updated on 14/Mar/21 $$\mathrm{i}\:\mathrm{guess}\:\mathrm{the}\:\mathrm{series}\:\mathrm{should}\:\mathrm{be}\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{k}}{\left(\mathrm{k}^{\mathrm{2}}…