Menu Close

Category: Limits

The-following-image-shows-the-functiond-f-x-xe-1-1-x-and-g-x-x-1-Can-you-explain-as-to-why-as-f-x-that-f-x-g-x-

Question Number 4281 by Filup last updated on 07/Jan/16 $$\mathrm{The}\:\mathrm{following}\:\mathrm{image}\:\mathrm{shows}\:\mathrm{the}\:\mathrm{functiond} \\ $$$${f}\left({x}\right)={xe}^{\frac{\mathrm{1}}{\mathrm{1}−{x}}} \:\:\:\:\:\:\:\:\mathrm{and}\:\:\:\:\:\:{g}\left({x}\right)={x}−\mathrm{1} \\ $$$$ \\ $$$$\mathrm{Can}\:\mathrm{you}\:\mathrm{explain}\:\mathrm{as}\:\mathrm{to}\:\mathrm{why}\:\mathrm{as}\:\mid{f}\left({x}\right)\mid\rightarrow\infty, \\ $$$$\mathrm{that}\:{f}\left({x}\right)\rightarrow{g}\left({x}\right). \\ $$ Commented by Filup last…

Question-69710

Question Number 69710 by ahmadshahhimat775@gmail.com last updated on 26/Sep/19 Commented by mathmax by abdo last updated on 27/Sep/19 $${we}\:{have}\:{x}^{\mathrm{2}} −\mathrm{6}{x}\:+\mathrm{5}\:={x}^{\mathrm{2}} −{x}\:−\mathrm{5}\left({x}−\mathrm{1}\right)={x}\left({x}−\mathrm{1}\right)−\mathrm{5}\left({x}−\mathrm{1}\right) \\ $$$$=\left({x}−\mathrm{1}\right)\left({x}−\mathrm{5}\right) \\ $$$$\Rightarrow{lim}_{{x}\rightarrow\mathrm{1}}…

Question-69709

Question Number 69709 by ahmadshahhimat775@gmail.com last updated on 26/Sep/19 Commented by kaivan.ahmadi last updated on 26/Sep/19 $${lim}_{{x}\rightarrow\infty} \frac{\mathrm{2}{x}}{\mathrm{3}^{{x}} {ln}\mathrm{3}}={lim}_{{x}\rightarrow\infty} \frac{\mathrm{2}}{\mathrm{3}^{{x}} \left({ln}\mathrm{3}\right)^{\mathrm{2}} }=\mathrm{0} \\ $$ Commented…

Limit-a-lim-x-pi-tan-1-tan-2-x-2-b-lim-x-1-108-x-2-2x-x-1-3-x-3-1-3-x-1-

Question Number 135223 by benjo_mathlover last updated on 11/Mar/21 $${Limit}\: \\ $$$$\left({a}\right)\:\underset{{x}\rightarrow\pi} {\mathrm{lim}}\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{tan}\:^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)\right)=? \\ $$$$\left({b}\right)\:\underset{{x}\rightarrow−\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{108}\left({x}^{\mathrm{2}} +\mathrm{2}{x}\right)\left({x}+\mathrm{1}\right)^{\mathrm{3}} }{\left({x}^{\mathrm{3}} +\mathrm{1}\right)^{\mathrm{3}} \left({x}−\mathrm{1}\right)}=? \\ $$ Answered…

Question-69667

Question Number 69667 by ahmadshahhimat775@gmail.com last updated on 26/Sep/19 Answered by Kunal12588 last updated on 26/Sep/19 $$\underset{{x}\rightarrow\frac{\pi}{\mathrm{3}}} {{lim}}\frac{{sec}\:{x}\:−\mathrm{2}}{\frac{\pi}{\mathrm{3}}−{x}} \\ $$$$=\underset{{x}\rightarrow\frac{\pi}{\mathrm{3}}} {{lim}}\frac{{sec}\:{x}\:{tan}\:{x}}{−\mathrm{1}} \\ $$$$=−\mathrm{2}×\sqrt{\mathrm{3}}=−\mathrm{2}\sqrt{\mathrm{3}} \\ $$…

Is-there-f-n-such-that-lim-x-0-n-1-f-n-x-n-0-f-n-is-independent-of-x-

Question Number 4132 by prakash jain last updated on 29/Dec/15 $$\mathrm{Is}\:\mathrm{there}\:{f}\left({n}\right)\:\mathrm{such}\:\mathrm{that} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left[\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:{f}\left({n}\right){x}^{{n}} \right]\neq\mathrm{0} \\ $$$${f}\left({n}\right)\:\mathrm{is}\:\mathrm{independent}\:\mathrm{of}\:{x}. \\ $$ Commented by Yozzii last…

without-using-lhospital-please-prove-that-lim-x-0-x-sin-x-x-3-1-6-I-want-every-method-possible-because-someone-challenge-me-

Question Number 69607 by malwaan last updated on 25/Sep/19 $$\boldsymbol{{without}}\:\boldsymbol{{using}}\:\boldsymbol{{lhospital}}\:\boldsymbol{{please}} \\ $$$$\boldsymbol{{prove}}\:\boldsymbol{{that}} \\ $$$$\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{{lim}}}\:\frac{\boldsymbol{{x}}−\boldsymbol{{sin}}\:\boldsymbol{{x}}}{\boldsymbol{{x}}^{\mathrm{3}} }\:=\:\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$\boldsymbol{{I}}\:\boldsymbol{{want}}\:\boldsymbol{{every}}\:\boldsymbol{{method}} \\ $$$$\boldsymbol{{possible}}\:\boldsymbol{{because}}\:\boldsymbol{{someone}} \\ $$$$\boldsymbol{{challenge}}\:\boldsymbol{{me}}\: \\ $$ Commented…

Question-69593

Question Number 69593 by ahmadshahhimat775@gmail.com last updated on 25/Sep/19 Commented by mathmax by abdo last updated on 25/Sep/19 $${let}\:{f}\left({x}\right)\:=\frac{\sqrt{\mathrm{6}−{x}}−\mathrm{2}}{\mathrm{3}−\sqrt{\mathrm{11}−{x}}}\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{2}} \:{f}\left({x}\right)\:={lim}_{{x}\rightarrow\mathrm{2}} \:\:\:\:\:\frac{\left(\sqrt{\mathrm{6}−{x}}−\mathrm{2}\right)\left(\sqrt{\mathrm{6}−{x}}+\mathrm{2}\right)\left(\mathrm{3}+\sqrt{\mathrm{11}−{x}}\right)}{\left(\mathrm{3}−\sqrt{\mathrm{11}−{x}}\right)\left(\mathrm{3}+\sqrt{\mathrm{11}−{x}}\right)\left(\sqrt{\mathrm{6}−{x}}+\mathrm{2}\right)} \\ $$$$={lim}_{{x}\rightarrow\mathrm{2}}…