Question Number 133494 by Eric002 last updated on 22/Feb/21 $${solve}\:{without}\:{using}\:{l}'{hopital}\:{and}\:{series}\: \\ $$$$\underset{{x}\rightarrow\mathrm{8}} {\mathrm{lim}}\frac{{x}\:\sqrt[{\mathrm{3}}]{{x}}−\mathrm{16}}{{x}−\mathrm{8}} \\ $$ Answered by Olaf last updated on 22/Feb/21 $$ \\ $$$$\mathrm{X}\:=\:\frac{{x}\sqrt[{\mathrm{3}}]{{x}}−\mathrm{16}}{{x}−\mathrm{8}}…
Question Number 133462 by benjo_mathlover last updated on 22/Feb/21 Answered by TheSupreme last updated on 22/Feb/21 $${both}\:{converge} \\ $$ Commented by benjo_mathlover last updated on…
Question Number 133454 by rs4089 last updated on 22/Feb/21 Answered by TheSupreme last updated on 22/Feb/21 $$\Omega=\left\{\left({x},{y}\right)\mid\:{x}>\mathrm{0}\:;\:\mathrm{0}<{y}<{x}\right\} \\ $$$$\Omega=\left\{\left({x},{y}\right)\mid\:{y}>\mathrm{0},\:{x}>{y}\right\} \\ $$$${I}=\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{{x}} {e}^{−{xy}}…
Question Number 2322 by prakash jain last updated on 15/Nov/15 $${a}_{\mathrm{0}} ={x} \\ $$$${a}_{{n}+\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{1}+{a}_{{n}} } \\ $$$$\mathrm{Find}\:\mathrm{possible}\:\mathrm{value}\:\mathrm{for}\:{x}\:\mathrm{such}\:\mathrm{that} \\ $$$${a}_{{n}} =−\mathrm{1}\:\mathrm{for}\:\mathrm{some}\:{n}\in\mathbb{N}. \\ $$$$\mathrm{For}\:\mathrm{example}:\: \\ $$$${x}=−\mathrm{2},\:{a}_{\mathrm{1}}…
Question Number 2297 by prakash jain last updated on 14/Nov/15 $${a}_{\mathrm{0}} ={k} \\ $$$${a}_{{n}+\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{1}+{a}_{{n}} } \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{a}_{{n}} =? \\ $$ Commented by Yozzi…
Question Number 2265 by B744237509 last updated on 12/Nov/15 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{3}{x}+{sin}\mathrm{2}{x}}{\mathrm{2}{x}+{sin}\mathrm{3}{x}}=? \\ $$$$ \\ $$$$ \\ $$ Answered by Filup last updated on 12/Nov/15 $$=\underset{{x}\rightarrow\mathrm{0}}…
Question Number 133277 by Engr_Jidda last updated on 20/Feb/21 $${use}\:{weierstrass}\:{m}−{test}\:{and}\:{dirichlet} \\ $$$${test}\:{to}\:{confirm}\:{the}\:{uniformly}\:{covergence} \\ $$$${of}\:{the}\:{following}\:{series}\:{in}\:{the}\:{interval}\:\left[\mathrm{0},\mathrm{1}\right] \\ $$$$\left.{a}\right)\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{cosnx}}{{n}^{\mathrm{4}} } \\ $$$$\left.{b}\right)\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{cosnx}}{{n}^{\frac{\mathrm{8}}{\mathrm{7}}} } \\…
Question Number 133161 by abdullahquwatan last updated on 19/Feb/21 $$\mathrm{give}\:\mathrm{me}\:\mathrm{problems}\:\mathrm{algebra}\:\mathrm{limit}\:\mathrm{function}\:\mathrm{hard} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 133114 by bemath last updated on 19/Feb/21 $$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{x}}}{\mathrm{x}}\:+\:\frac{\mathrm{1}}{\mathrm{4}}\mathrm{sin}\:\left(\frac{\mathrm{2}}{\mathrm{x}}\right)\right)^{\mathrm{x}^{\mathrm{2}} +\mathrm{sin}\:\mathrm{3x}} ? \\ $$ Answered by bobhans last updated on 19/Feb/21 $${L}=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\sqrt{{x}^{\mathrm{2}}…
Question Number 133091 by metamorfose last updated on 18/Feb/21 $$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{\mathrm{3}} {cos}\left({xt}\right){dt}…? \\ $$ Answered by mnjuly1970 last updated on 18/Feb/21 $${answer}:=\mathrm{0}…