Menu Close

Category: Limits

lim-x-0-x-x-x-1-1-4-1-

Question Number 131882 by Eric002 last updated on 09/Feb/21 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}}{{x}+\sqrt[{\mathrm{4}}]{{x}+\mathrm{1}}−\mathrm{1}} \\ $$ Answered by liberty last updated on 09/Feb/21 $$\:\mathrm{L}'\mathrm{H}\ddot {\mathrm{o}pital}\:\mathrm{L}=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left[\:\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}\:\sqrt[{\mathrm{4}}]{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{3}} }}}\:\right]=\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}}}=\:\frac{\mathrm{4}}{\mathrm{5}} \\…

lim-x-0-x-2-cos-x-3sin-x-x-5-

Question Number 131836 by liberty last updated on 09/Feb/21 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}\left(\mathrm{2}+\mathrm{cos}\:\mathrm{x}\right)−\mathrm{3sin}\:\mathrm{x}}{\mathrm{x}^{\mathrm{5}} } \\ $$ Commented by EDWIN88 last updated on 10/Feb/21 $$\mathrm{another}\:\mathrm{way}\:\mathrm{L}'\mathrm{H}\hat {\mathrm{o}pital} \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}}…

Let-lim-x-0-x-4-3-a-2-a-4-x-4-x-8-a-gt-0-If-is-finite-then-a-a-3-2-b-a-3-2-c-1-3-d-1-9-

Question Number 131789 by bemath last updated on 08/Feb/21 $$\mathrm{Let}\:\varphi\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}^{\mathrm{4}} +\mathrm{3}\left(\mathrm{a}^{\mathrm{2}} −\sqrt{\mathrm{a}^{\mathrm{4}} +\mathrm{x}^{\mathrm{4}} }\:\right)}{\mathrm{x}^{\mathrm{8}} }\:;\:\mathrm{a}>\mathrm{0} \\ $$$$\mathrm{If}\:\varphi\:\mathrm{is}\:\mathrm{finite}\:\mathrm{then}\: \\ $$$$\left(\mathrm{a}\right)\:\mathrm{a}=\frac{\mathrm{3}}{\mathrm{2}}\:\:\:\:\left(\mathrm{b}\right)\:\mathrm{a}=\sqrt{\frac{\mathrm{3}}{\mathrm{2}}}\:\:\:\:\:\:\left(\mathrm{c}\right)\:\varphi=\frac{\mathrm{1}}{\mathrm{3}}\:\:\:\:\left(\mathrm{d}\right)\:\varphi=\frac{\mathrm{1}}{\mathrm{9}} \\ $$ Answered by Dwaipayan…

lim-x-pi-2-2-cos-x-1-x-x-pi-2-

Question Number 131769 by liberty last updated on 08/Feb/21 $$\:\:\:\underset{{x}\rightarrow\pi/\mathrm{2}} {\mathrm{lim}}\frac{\mathrm{2}^{−\mathrm{cos}\:\mathrm{x}} \:−\mathrm{1}}{\mathrm{x}\left(\mathrm{x}−\frac{\pi}{\mathrm{2}}\right)}\:=?\: \\ $$ Answered by bemath last updated on 08/Feb/21 $$\:\underset{{x}\rightarrow\pi/\mathrm{2}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{x}}\:.\:\underset{{x}\rightarrow\pi/\mathrm{2}} {\mathrm{lim}}\:\frac{\mathrm{2}^{\mathrm{sin}\:\left(\mathrm{x}−\frac{\pi}{\mathrm{2}}\right)} −\mathrm{1}}{\mathrm{x}−\frac{\pi}{\mathrm{2}}}\:=…

given-two-sequence-a-n-gt-0-b-n-gt-0-such-n-N-a-n-n-lt-b-n-lt-a-n-1-n-a-if-n-1-a-n-converge-then-n-1-b-n-converge-b-proof-that-if-a-n-0-1-then-b-n-0-1-c-

Question Number 676 by 123456 last updated on 22/Feb/15 $${given}\:{two}\:{sequence}\:{a}_{{n}} >\mathrm{0},{b}_{{n}} >\mathrm{0}\:\:{such} \\ $$$$\forall{n}\in\mathbb{N}^{\ast} ,{a}_{{n}} ^{{n}} <{b}_{{n}} <{a}_{{n}} ^{\mathrm{1}/{n}} \\ $$$${a}.\:{if}\:\underset{{n}=\mathrm{1}} {\overset{+\infty} {\sum}}{a}_{{n}} \:{converge}\:{then}\:\underset{{n}=\mathrm{1}} {\overset{+\infty}…