Question Number 213073 by ajfour last updated on 29/Oct/24 $${L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left\{\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\mathrm{1}+\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }}−\mathrm{1}\right)\right\} \\ $$ Answered by universe last updated on 29/Oct/24 $${L}\:=\:\underset{{x}\rightarrow\mathrm{0}}…
Question Number 212984 by Faetmaaa last updated on 27/Oct/24 $$\underline{\boldsymbol{\mathrm{Notation}}\::}\:\mathrm{Soit}\:{A}\:\mathrm{une}\:\mathrm{partie}\:\mathrm{de}\:\mathbb{R}.\:\mathrm{On}\:\mathrm{appelle}\:{indicatrice}\:{de}\:{A}, \\ $$$$\mathrm{not}\acute {\mathrm{e}e}\:\chi_{{A}} ,\:\mathrm{l}'\mathrm{application}\:{x}\: \:\begin{cases}{\mathrm{1}\:\mathrm{si}\:{x}\:\in\:{A}}\\{\mathrm{0}\:\mathrm{sinon}}\end{cases}. \\ $$$$ \\ $$$$\mathrm{1}.\:\mathrm{Pour}\:{k}\:\mathrm{dans}\:\mathbb{N}^{\ast} \:\mathrm{notons}\:{f}_{{k}} \::\:{x}\: \:\left(\mathrm{cos}\:{x}\right)^{\mathrm{2}{k}} . \\ $$$$\mathrm{Montrer}\:\mathrm{que}\:\left({f}_{{k}}…
Question Number 212808 by RoseAli last updated on 24/Oct/24 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left[\left({x}^{.\mathrm{1}} −{x}^{.\mathrm{9}} \right)^{\mathrm{1}{o}} −{x}\right] \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 212762 by universe last updated on 23/Oct/24 Commented by MrGaster last updated on 23/Oct/24 $$\mathrm{Rewrite}\:\mathrm{the}\:\mathrm{integrand}\:\mathrm{function}\:\mathrm{as}: \\ $$$$\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)\ldots\left({x}−{n}\right)=\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}{x}\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)\ldots\left({x}−{n}\right) \\ $$$$\mathrm{Computational}\:\mathrm{integral}: \\ $$$$\int_{\mathrm{0}} ^{{n}}…
Question Number 212745 by RoseAli last updated on 22/Oct/24 Answered by mehdee7396 last updated on 22/Oct/24 $${lim}_{{x}\rightarrow\mathrm{0}} \left(\frac{\mathrm{1}+{tanx}}{\mathrm{1}−{tanx}}−\mathrm{1}\right)×\frac{\mathrm{1}}{{sinx}} \\ $$$$={lim}_{{x}\rightarrow\mathrm{0}} \left(\frac{\mathrm{2}{tanx}}{\mathrm{1}−{tanx}}\right)×\frac{\mathrm{1}}{{sinx}} \\ $$$$={lim}_{{x}\rightarrow\mathrm{0}} \left(\frac{\mathrm{2}}{\mathrm{1}−{tanx}}\right)×\frac{\mathrm{1}}{{cosx}}=\mathrm{2} \\…
Question Number 212495 by liuxinnan last updated on 15/Oct/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 212444 by racer last updated on 13/Oct/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 212405 by mathlove last updated on 13/Oct/24 $$\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\frac{{e}^{{x}} −{e}^{\mathrm{3}} }{{x}−\mathrm{3}}=? \\ $$ Answered by som(math1967) last updated on 13/Oct/24 $$\underset{{x}\rightarrow\mathrm{3}} {\:{lim}}\frac{{e}^{\mathrm{3}} \left({e}^{{x}−\mathrm{3}}…
Question Number 212204 by liuxinnan last updated on 06/Oct/24 $${f}\left({x}\right)\:{is}\:{continous}\:{and} \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}{f}\left({x}\right)=−\infty \\ $$$${prove}\:{max}\left({f}\left({x}\right)\right)\:{exist} \\ $$ Commented by mr W last updated on 06/Oct/24…
Question Number 212169 by universe last updated on 04/Oct/24 $$\:\:\:\:\:\:\:\:\:\:\underset{\lambda\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\:\int_{\lambda} ^{\mathrm{2}\lambda} \:\frac{{e}^{\left({x}−\mathrm{1}\right)^{\mathrm{2}} } }{{x}}{dx}\:=\:? \\ $$ Answered by MrGaster last updated on 03/Nov/24…