Menu Close

Category: Limits

lim-x-0-x-2-1-x-2-1-2000x-5-2000x-5-

Question Number 128624 by john_santu last updated on 09/Jan/21 $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mid\mathrm{x}^{\mathrm{2}} +\mathrm{1}\mid−\mid\mathrm{x}^{\mathrm{2}} −\mathrm{1}\mid}{\mid\mathrm{2000x}+\mathrm{5}\mid−\mid\mathrm{2000x}−\mathrm{5}\mid}\:=? \\ $$ Answered by liberty last updated on 09/Jan/21 $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)+\left(\mathrm{x}^{\mathrm{2}}…

lim-x-0-x-cot-x-1-x-2-

Question Number 128607 by john_santu last updated on 08/Jan/21 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{x}.\mathrm{cot}\:\mathrm{x}−\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }=? \\ $$ Answered by malwan last updated on 08/Jan/21 $$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:\frac{\frac{{x}}{{tan}\:{x}}\:−\:\mathrm{1}}{{x}^{\mathrm{2}} }\:=\:\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:\frac{{x}−{tan}\:{x}}{{x}^{\mathrm{2}}…

lim-x-1-x-x-2-1-x-x-2-

Question Number 128605 by john_santu last updated on 08/Jan/21 $$\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\sqrt{\mathrm{1}+\mathrm{x}+\mathrm{x}^{\mathrm{2}} }−\sqrt{\mathrm{1}−\mathrm{x}+\mathrm{x}^{\mathrm{2}} }=? \\ $$ Commented by john_santu last updated on 08/Jan/21 Answered by mathmax…

lim-x-1-x-x-x-ln-x-x-1-

Question Number 128604 by john_santu last updated on 08/Jan/21 $$\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{x}^{\mathrm{x}} −\mathrm{x}}{\mathrm{ln}\:\mathrm{x}−\mathrm{x}+\mathrm{1}}\:? \\ $$ Answered by liberty last updated on 09/Jan/21 $$\:\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{x}} \right)=\mathrm{x}^{\mathrm{x}} \left(\mathrm{ln}\:\mathrm{x}+\mathrm{1}\right) \\…

lim-x-0-3x-1-3x-1-x-

Question Number 128593 by Eric002 last updated on 08/Jan/21 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mid\mathrm{3}{x}−\mathrm{1}\mid−\mid\mathrm{3}{x}+\mathrm{1}\mid}{{x}} \\ $$ Commented by MJS_new last updated on 08/Jan/21 $$\frac{\mid\mathrm{3}{x}−\mathrm{1}\mid−\mid\mathrm{3}{x}+\mathrm{1}\mid}{{x}}=\frac{\mathrm{3}}{{x}}\left(\mid{x}−\frac{\mathrm{1}}{\mathrm{3}}\mid−\mid{x}+\frac{\mathrm{1}}{\mathrm{3}}\mid\right)= \\ $$$$\:\:\:\:\:\left[−\frac{\mathrm{1}}{\mathrm{3}}\leqslant{x}\leqslant\frac{\mathrm{1}}{\mathrm{3}}\right] \\ $$$$=\frac{\mathrm{3}}{{x}}\left(−\mathrm{2}{x}\right)=−\frac{\mathrm{6}{x}}{{x}}=−\mathrm{6}\forall{x}\in\left[−\frac{\mathrm{1}}{\mathrm{3}};\:\frac{\mathrm{1}}{\mathrm{3}}\right]\wedge{x}\neq\mathrm{0}…

nice-calculus-prove-that-0-sin-x-2-sin-x-2-dx-1-4-pi-2-e-2-sin-2-cos-2-

Question Number 128567 by mnjuly1970 last updated on 08/Jan/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:…{nice}\:\:\:{calculus}… \\ $$$$\:{prove}\:{that}:::: \\ $$$$\:\:\:\phi=\int_{\mathrm{0}} ^{\:\infty} {sin}\left({x}^{\mathrm{2}} \right){sin}\left({x}^{−\mathrm{2}} \right){dx} \\ $$$$\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{4}}\sqrt{\frac{\pi}{\mathrm{2}}}\:\left({e}^{−\mathrm{2}} +{sin}\left(\mathrm{2}\right)−{cos}\left(\mathrm{2}\right)\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$…