Question Number 126761 by bemath last updated on 24/Dec/20 Answered by liberty last updated on 24/Dec/20 $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{3}} \left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}{x}−\frac{\mathrm{1}}{\mathrm{8}}{x}^{\mathrm{2}} +{O}\left({x}^{\mathrm{3}} \right)\right)−\left({x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}+{O}\left({x}^{\mathrm{5}} \right)\right)^{\mathrm{3}} −\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{3}} \left({x}+\frac{\mathrm{1}}{\mathrm{3}}{x}^{\mathrm{3}}…
Question Number 192281 by uchihayahia last updated on 14/May/23
Question Number 126744 by bemath last updated on 24/Dec/20
Question Number 126685 by bramlexs22 last updated on 23/Dec/20
Question Number 126599 by liberty last updated on 22/Dec/20
Question Number 192115 by mnjuly1970 last updated on 08/May/23
Question Number 60981 by necx1 last updated on 28/May/19 Commented by Prithwish sen last updated on 28/May/19
Question Number 192033 by sonukgindia last updated on 06/May/23 Answered by mehdee42 last updated on 06/May/23 $${L}={e}^{\:{lim}_{{x}\rightarrow\mathrm{0}} \:\left(\frac{{sinx}}{{x}}\:−\mathrm{1}\:\right)\frac{\mathrm{1}}{{x}^{\mathrm{2}} \:}} \:={e}^{\:{lim}_{{x}\rightarrow\mathrm{0}} \:\left(\frac{{sinx}\:−\mathrm{1}}{{x}^{\mathrm{3}} }\:\right)\:} =\:{e}^{\:{lim}_{{x}\rightarrow\mathrm{0}} \:\left(\frac{−\frac{\mathrm{1}}{\mathrm{6}}{x}^{\mathrm{3}} }{{x}^{\mathrm{3}}…
Question Number 60856 by Tony Lin last updated on 26/May/19
Question Number 126376 by benjo_mathlover last updated on 20/Dec/20