Menu Close

Category: Limits

Question-126761

Question Number 126761 by bemath last updated on 24/Dec/20 Answered by liberty last updated on 24/Dec/20 $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{3}} \left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}{x}−\frac{\mathrm{1}}{\mathrm{8}}{x}^{\mathrm{2}} +{O}\left({x}^{\mathrm{3}} \right)\right)−\left({x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}+{O}\left({x}^{\mathrm{5}} \right)\right)^{\mathrm{3}} −\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{3}} \left({x}+\frac{\mathrm{1}}{\mathrm{3}}{x}^{\mathrm{3}}…

Question-60981

Question Number 60981 by necx1 last updated on 28/May/19 Commented by Prithwish sen last updated on 28/May/19 LetA=limx(x!xx)1x$$\therefore\mathrm{lnA}=\mathrm{lim}_{\mathrm{x}\rightarrow\infty} \frac{\mathrm{1}}{\mathrm{x}}\mathrm{ln}\left(\frac{\mathrm{1}.\mathrm{2}.\mathrm{3}………..\mathrm{x}}{\mathrm{x}.\mathrm{x}.\mathrm{x}…………\mathrm{x}}\right)…

Question-192033

Question Number 192033 by sonukgindia last updated on 06/May/23 Answered by mehdee42 last updated on 06/May/23 $${L}={e}^{\:{lim}_{{x}\rightarrow\mathrm{0}} \:\left(\frac{{sinx}}{{x}}\:−\mathrm{1}\:\right)\frac{\mathrm{1}}{{x}^{\mathrm{2}} \:}} \:={e}^{\:{lim}_{{x}\rightarrow\mathrm{0}} \:\left(\frac{{sinx}\:−\mathrm{1}}{{x}^{\mathrm{3}} }\:\right)\:} =\:{e}^{\:{lim}_{{x}\rightarrow\mathrm{0}} \:\left(\frac{−\frac{\mathrm{1}}{\mathrm{6}}{x}^{\mathrm{3}} }{{x}^{\mathrm{3}}…

lim-x-0-1-3x-5-x-

Question Number 126376 by benjo_mathlover last updated on 20/Dec/20 limx0(1+3x)5x? Answered by liberty last updated on 20/Dec/20 $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{1}+\mathrm{3}{x}\right)^{−\frac{\mathrm{5}}{{x}}} =\:{e}^{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{1}+\mathrm{3}{x}−\mathrm{1}\right)\left(−\frac{\mathrm{5}}{{x}}\right)}…