Question Number 210549 by universe last updated on 12/Aug/24 $$\mathrm{let}\:\mathrm{a}\:\mathrm{sequence}\:\mathrm{be}\:\mathrm{difined}\:\mathrm{as} \\ $$$$\:\mathrm{a}_{\mathrm{n}} =\:\mathrm{a}_{\mathrm{n}−\mathrm{1}} \:+\:\frac{\mathrm{2cos}\:\left(\frac{\mathrm{a}_{\mathrm{n}−\mathrm{1}} }{\mathrm{2}}\right)}{\mathrm{2sin}\:\left(\frac{\mathrm{a}_{\mathrm{n}−\mathrm{1}} }{\mathrm{2}}\right)−\mathrm{1}}\:\:,\:\mathrm{a}_{\mathrm{0}\:} =\:\mathrm{0} \\ $$$$\mathrm{find}\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{a}_{\mathrm{n}\:} \:=\:? \\ $$ Answered by…
Question Number 209999 by som(math1967) last updated on 28/Jul/24 $$\:\:\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{{lim}}}\:\frac{\boldsymbol{{e}}^{\boldsymbol{{x}}} −\mathrm{1}}{\:\sqrt{\mathrm{1}−\boldsymbol{{cosx}}}}\:=? \\ $$ Answered by RabieIsmail last updated on 28/Jul/24 $$\sqrt{\mathrm{2}} \\ $$ Commented…
Question Number 209926 by depressiveshrek last updated on 26/Jul/24 $$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{3}{n}+\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{3}{n}+\mathrm{2}}+…+\frac{\mathrm{1}}{\mathrm{4}{n}} \\ $$ Commented by Frix last updated on 26/Jul/24 $$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{\mathrm{1}}{\mathrm{3}{n}+{k}}\:={H}_{\mathrm{4}{n}} −{H}_{\mathrm{3}{n}} \\…
Question Number 209810 by mnjuly1970 last updated on 22/Jul/24 $$ \\ $$$$\:\:\:\mathrm{lim}_{\:\mathrm{x}\rightarrow\mathrm{0}} \:\frac{\:\left(\mathrm{1}+\:\mathrm{x}\:\right)^{\frac{\mathrm{1}}{\mathrm{x}}} −\mathrm{e}}{\mathrm{x}}\:=\:? \\ $$$$ \\ $$ Answered by mr W last updated on…
Question Number 209434 by justenspi last updated on 10/Jul/24 $${Help} \\ $$ Commented by justenspi last updated on 10/Jul/24 Commented by Berbere last updated on…
Question Number 209356 by mnjuly1970 last updated on 08/Jul/24 $$ \\ $$$$\:\:\:\:\:{Evaluate}\:: \\ $$$$ \\ $$$$ \\ $$$$\:\:\:\:\mathrm{lim}_{\:{n}\rightarrow\infty} \:\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\:{cos}\:\left(\frac{\mathrm{2}^{\:{k}} .\pi}{\mathrm{2}^{\:{n}} \:−\mathrm{1}}\:\right)\:\:=\:?\:\:\:\:\:\:\:\:\:\: \\ $$$$…
Question Number 209220 by alcohol last updated on 04/Jul/24 Answered by Berbere last updated on 04/Jul/24 $${SAB}\:,{SAC}\:\:\&{ABC}\:{c}\:{est}\:{claire}\:\left({AS}\right)\bot\left({ABC}\right)\:\&{ABC}\:{rectangle} \\ $$$$\Rightarrow{SA}^{\mathrm{2}} +{AB}^{\mathrm{2}} ={SB}^{\mathrm{2}} ;{SA}^{\mathrm{2}} +{AC}^{\mathrm{2}} ={SC}^{\mathrm{2}} ;{CA}^{\mathrm{2}}…
Question Number 209116 by alcohol last updated on 02/Jul/24 Answered by A5T last updated on 02/Jul/24 $${WLOG},\:{let}\:{a}\geqslant{b}\geqslant{c} \\ $$$$\mathrm{1}=\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}\leqslant\frac{\mathrm{3}}{{c}}\Rightarrow{c}\leqslant\mathrm{3} \\ $$$${when}\:{c}=\mathrm{3};\frac{\mathrm{2}}{\mathrm{3}}=\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}\leqslant\frac{\mathrm{2}}{{b}}\Rightarrow{b}\leqslant\mathrm{3} \\ $$$${b}=\mathrm{3}\Rightarrow{a}=\mathrm{3};\:{b}=\mathrm{2}\Rightarrow{a}=\mathrm{6}\:\:\:\rightarrow\leftarrow \\ $$$$\Rightarrow\left({a},{b},{c}\right)=\left(\mathrm{3},\mathrm{3},\mathrm{3}\right)…
Question Number 208816 by alcohol last updated on 23/Jun/24 Commented by alcohol last updated on 23/Jun/24 $${please}\:{help} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 208482 by efronzo1 last updated on 17/Jun/24 Terms of Service Privacy Policy Contact: info@tinkutara.com