Question Number 124555 by mnjuly1970 last updated on 04/Dec/20 Answered by mnjuly1970 last updated on 05/Dec/20 $${solution}: \\ $$$$\:\:{f}\::\left[{a},{b}\right]\rightarrow\mathbb{R}^{+} \cup\left\{\mathrm{0}\right\}\:{is}\:{continuous}\:: \\ $$$$\:\:\:\:{lim}_{{n}\rightarrow\infty} \left(\int_{{a}} ^{\:{b}} {f}^{\:{n}}…
Question Number 124548 by mnjuly1970 last updated on 04/Dec/20 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…{nice}\:\:{calculus}… \\ $$$$\:\:\:\:\:\:\:{evaluate}\:::: \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} \left\{\frac{\mathrm{1}}{{x}}\left[\frac{{ln}\left(\Gamma\left(\mathrm{1}+{x}\right)\right.}{{x}}−\psi\left({x}+\mathrm{1}\right)\right]\right\}=? \\ $$$$ \\ $$ Answered by mindispower last updated on…
Question Number 190082 by Rupesh123 last updated on 27/Mar/23 Answered by a.lgnaoui last updated on 29/Mar/23 $${L}=\frac{{e}^{{x}^{\mathrm{3}} } }{{x}^{\mathrm{3}} }−\frac{\mathrm{3}\sqrt{\left(\mathrm{1}−{x}\right)\left(\mathrm{1}+{x}^{\mathrm{2}} +{x}\right)}}{\left({x}^{\mathrm{3}} −\mathrm{1}\right)+\mathrm{1}}+\frac{\sqrt{\left(\mathrm{1}−{x}\right)\left(\mathrm{1}+{x}\right)}}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)+\mathrm{1}} \\ $$$$\frac{{e}^{{x}}…
Question Number 124537 by nimnim last updated on 04/Dec/20 $${Please}\:{help} \\ $$$$ \\ $$$$\:\:{Show}\:{that}\:\:\:\:\:\:\underset{{n}\rightarrow\infty} {{lim}}\left(\frac{\left(\mathrm{3}{n}\right)!}{\left({n}!\right)^{\mathrm{3}} }\right)^{\mathrm{1}/{n}} =\:\mathrm{27} \\ $$ Answered by Dwaipayan Shikari last updated…
Question Number 124491 by Mammadli last updated on 03/Dec/20 $$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{2}^{{n}} }{{n}!}\:=\:\mathrm{0} \\ $$ Answered by mathmax by abdo last updated on 03/Dec/20 $$\mathrm{let}\:\mathrm{U}_{\mathrm{n}} =\frac{\mathrm{2}^{\mathrm{n}}…
Question Number 58948 by Mikael_Marshall last updated on 01/May/19 $$\underset{{x}\rightarrow+\infty} {{lim}}\:\frac{\sqrt{{x}}}{\:\sqrt{{x}+\sqrt{{x}+\sqrt{{x}}}}} \\ $$ Commented by maxmathsup by imad last updated on 01/May/19 $$={lim}_{{x}\rightarrow+\infty} \:\:\:\:\frac{\sqrt{{x}}}{\:\sqrt{{x}}\sqrt{\mathrm{1}+\sqrt{\frac{{x}+\sqrt{{x}}}{{x}^{\mathrm{2}} }}}}\:={lim}_{{x}\rightarrow+}…
Question Number 58867 by malwaan last updated on 01/May/19 $$\mathrm{1}:\:\:\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:{sin}\left(\frac{\mathrm{1}}{{x}}\right) \\ $$$$\mathrm{2}:\:\underset{{x}\rightarrow\infty} {{lim}}\:{sin}\left({x}\right) \\ $$ Commented by tanmay last updated on 01/May/19 $$\left.\mathrm{1}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{sin}\left(\frac{\mathrm{1}}{{x}}\right)\:…
Question Number 58827 by jimful last updated on 30/Apr/19 $$\mathrm{Find}\:\:\sum_{\mathrm{x}=\mathrm{1}} ^{\infty} \left(\frac{\mathrm{1}}{\mathrm{x}}−\mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)\right) \\ $$$$ \\ $$ Commented by tanmay last updated on 30/Apr/19 $${taking}\:{the}\:{help}\:{of}\:{graph}\:{we}\:{can}\:{find}\:{the}\:{value} \\…
Question Number 124355 by Eric002 last updated on 02/Dec/20 $${find}\:{the}\:{limit}\: \\ $$$$\underset{{n}\rightarrow\infty} {{lim}}\left({sin}\left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)+{sin}\left(\frac{\mathrm{2}}{{n}^{\mathrm{2}} }\right)+……+{sin}\left(\frac{{n}}{{n}^{\mathrm{2}} }\right)\right) \\ $$ Answered by Dwaipayan Shikari last updated on…
Question Number 189870 by uchihayahia last updated on 23/Mar/23 $$ \\ $$$$\:{how}\:{do}\:{i}\:{prove}\:{this}\:{using}\:\epsilon\:{and}\:\delta \\ $$$$\:{please}\:{help} \\ $$$$\underset{{x},{y}\rightarrow\left(\mathrm{2},\mathrm{1}\right)} {\mathrm{lim}}\:{x}^{\mathrm{2}} {y}=\mathrm{4} \\ $$$$ \\ $$ Answered by mehdee42…