Menu Close

Category: Limits

lim-x-pi-3-2cos-5x-tan-2-x-2sin-2-2x-4sin-2x-cos-x-tan-x-

Question Number 189842 by cortano12 last updated on 22/Mar/23 $$\:\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{3}}} {\mathrm{lim}}\:\frac{\mathrm{2cos}\:\mathrm{5x}\:\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}−\mathrm{2sin}\:^{\mathrm{2}} \mathrm{2x}}{\mathrm{4sin}\:\mathrm{2x}\:\mathrm{cos}\:\mathrm{x}−\mathrm{tan}\:\mathrm{x}}=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

lim-x-pi-7-2sin-x-7-2sin-x-tan-x-

Question Number 124273 by bramlexs22 last updated on 02/Dec/20 $$\:\:\underset{{x}\rightarrow\pi} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{7}+\mathrm{2sin}\:{x}}\:−\sqrt{\mathrm{7}−\mathrm{2sin}\:{x}}}{\mathrm{tan}\:{x}}\:=\:?\: \\ $$ Answered by Dwaipayan Shikari last updated on 02/Dec/20 $$\underset{{x}\rightarrow\pi} {\mathrm{lim}}\frac{\sqrt{\mathrm{7}+\mathrm{2}\left(\pi−{x}\right)}−\sqrt{\mathrm{7}−\mathrm{2}\pi+\mathrm{2}{x}}}{\pi−{x}}=\sqrt{\mathrm{7}}\left(\frac{\sqrt{\mathrm{1}+\frac{\mathrm{2}}{\mathrm{7}}\left(\pi−{x}\right)}−\sqrt{\mathrm{1}−\frac{\mathrm{2}}{\mathrm{7}}\left(\pi−{x}\right)}}{\pi−{x}}\right)\:\:\:\: \\ $$$$=\sqrt{\mathrm{7}}\left(\frac{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{7}}\left(\pi−{x}\right)−\mathrm{1}+\frac{\mathrm{1}}{\mathrm{7}}\left(\pi−{x}\right)}{\pi−{x}}\right){cosx}=−\sqrt{\mathrm{7}}\:\left(\frac{\mathrm{2}}{\mathrm{7}}\right)=−\frac{\mathrm{2}}{\:\sqrt{\mathrm{7}}}…

lim-x-0-1-cos5x-x-2-

Question Number 58671 by Mikael_Marshall last updated on 27/Apr/19 $$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:\:\frac{\mathrm{1}−{cos}\mathrm{5}{x}}{{x}^{\mathrm{2}} } \\ $$ Commented by maxmathsup by imad last updated on 27/Apr/19 $${we}\:{have}\:\mathrm{1}−{cos}\left(\mathrm{5}{x}\right)\:\sim\:\frac{\left(\mathrm{5}{x}\right)^{\mathrm{2}} }{\mathrm{2}}\:\:\:\left({x}\:\in{V}\left(\mathrm{0}\right)\right)\:\Rightarrow{lim}_{{x}\rightarrow\mathrm{0}}…

calculate-S-n-1-2n-n-2-

Question Number 189697 by mnjuly1970 last updated on 20/Mar/23 $$ \\ $$$$\:\:\:\:\:\:\:\mathrm{calculate}\:… \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{S}=\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\zeta\:\left(\mathrm{2}{n}\:\right)}{{n}^{\:\mathrm{2}} }\:=\:?\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:−−−−−−−−− \\ $$ Terms of Service Privacy…

lim-x-1-1-x-tan-pix-2-

Question Number 124129 by bramlexs22 last updated on 01/Dec/20 $$\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\left(\mathrm{1}−{x}\right)\:\mathrm{tan}\:\left(\frac{\pi{x}}{\mathrm{2}}\right)\:? \\ $$ Answered by mathmax by abdo last updated on 01/Dec/20 $$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\left(\mathrm{1}−\mathrm{x}\right)\mathrm{tan}\left(\frac{\pi\mathrm{x}}{\mathrm{2}}\right)\:\mathrm{we}\:\mathrm{do}\:\mathrm{the}\:\mathrm{changement}\:\mathrm{1}−\mathrm{x}=\mathrm{t}\:\Rightarrow \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{f}\left(\mathrm{1}−\mathrm{t}\right)=\mathrm{t}\:\mathrm{tan}\left(\frac{\pi}{\mathrm{2}}\left(\mathrm{1}−\mathrm{t}\right)\right)\:=\mathrm{t}\:\mathrm{tan}\left(\frac{\pi}{\mathrm{2}}−\frac{\pi}{\mathrm{2}}\mathrm{t}\right)\:=\frac{\mathrm{t}}{\mathrm{tan}\left(\frac{\pi\mathrm{t}}{\mathrm{2}}\right)}…

lim-x-x-20-70-2x-3-30-4x-1-15-5-x-85-

Question Number 58576 by Mikael_Marshall last updated on 25/Apr/19 $$\underset{{x}\rightarrow\infty} {{lim}}\:\:\frac{\left({x}−\mathrm{20}\right)^{\mathrm{70}} .\left(\mathrm{2}{x}+\mathrm{3}\right)^{\mathrm{30}} }{\left(\mathrm{4}{x}−\mathrm{1}\right)^{\mathrm{15}} .\left(\mathrm{5}−{x}^{\mathrm{85}} \right)} \\ $$ Answered by tanmay last updated on 25/Apr/19 $$\underset{{x}\rightarrow\infty}…

lim-x-0-sin-x-1-cos-3x-tan-x-2-lim-x-0-sin-x-1-cos-3x-tan-x-2-lim-x-0-sin-x-1-cos-3x-tan-x-2-

Question Number 124010 by john_santu last updated on 30/Nov/20 $$\:\underset{{x}\rightarrow\mathrm{0}^{+} \:} {\mathrm{lim}}\left(\frac{\mathrm{sin}\:{x}+\sqrt{\mathrm{1}−\mathrm{cos}\:\mathrm{3}{x}}}{\mathrm{tan}\:\left({x}\sqrt{\mathrm{2}}\right)}\right)= \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}\left(\frac{\mathrm{sin}\:{x}+\sqrt{\mathrm{1}−\mathrm{cos}\:\mathrm{3}{x}}}{\mathrm{tan}\:\left({x}\sqrt{\mathrm{2}}\right)}\right)= \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{sin}\:{x}+\sqrt{\mathrm{1}−\mathrm{cos}\:\mathrm{3}{x}}}{\mathrm{tan}\:\left({x}\sqrt{\mathrm{2}}\right)}\right)= \\ $$ Answered by liberty last…