Menu Close

Category: Limits

lim-x-0-cot-x-1-ln-x-

Question Number 121460 by bramlexs22 last updated on 08/Nov/20 $$\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\left(\mathrm{cot}\:\mathrm{x}\right)^{\frac{\mathrm{1}}{\mathrm{ln}\:\mathrm{x}}} \:?\: \\ $$ Answered by Dwaipayan Shikari last updated on 08/Nov/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left({cotx}\right)^{\frac{\mathrm{1}}{{logx}}}…

Question-186983

Question Number 186983 by cortano12 last updated on 12/Feb/23 Answered by CElcedricjunior last updated on 12/Feb/23 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\boldsymbol{{x}}\sqrt[{\mathrm{3}}]{\boldsymbol{{x}}−\mathrm{1}}+\sqrt[{\mathrm{4}}]{\left(\boldsymbol{{x}}+\mathrm{1}\right)}−\mathrm{1}}{\boldsymbol{{x}}^{\mathrm{2}} \sqrt[{\mathrm{3}}]{\boldsymbol{{x}}+\mathrm{1}}+\sqrt[{\mathrm{4}}]{\boldsymbol{{x}}+\mathrm{1}}−\mathrm{1}}=\boldsymbol{{k}} \\ $$$$\boldsymbol{{k}}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\boldsymbol{{x}}\left(−\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}\boldsymbol{{x}}+\frac{\mathrm{1}}{\mathrm{9}}\boldsymbol{{x}}^{\mathrm{2}} \right)+\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}}\boldsymbol{{x}}−\frac{\mathrm{3}}{\mathrm{32}}\boldsymbol{{x}}^{\mathrm{2}} \right)−\mathrm{1}}{\boldsymbol{{x}}^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}\boldsymbol{{x}}−\frac{\:\:\mathrm{1}}{\mathrm{9}}\boldsymbol{{x}}^{\mathrm{2}}…

for-every-n-N-f-n-x-nx-1-x-2-n-for-every-x-0-x-1-and-a-n-0-1-f-n-x-dx-If-S-n-sin-pia-n-for-every-n-N-then-lim-n-s-n-

Question Number 55907 by gunawan last updated on 06/Mar/19 $$\mathrm{for}\:\mathrm{every}\:{n}\:\in\:\mathbb{N}\:,\:{f}_{{n}} \left({x}\right)={nx}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}} , \\ $$$$\mathrm{for}\:\mathrm{every}\:{x},\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1} \\ $$$$\mathrm{and}\:{a}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} {f}_{{n}} \left({x}\right)\:{dx}. \\ $$$$\mathrm{If}\:\mathrm{S}_{\mathrm{n}} =\mathrm{sin}\:\left(\pi{a}_{{n}} \right),\:\mathrm{for}\:\mathrm{every}…

lim-n-k-1-n-8n-2-n-4-1-

Question Number 55906 by gunawan last updated on 06/Mar/19 $$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\overset{{n}} {\underset{{k}=\mathrm{1}} {\sum}}\frac{\mathrm{8}{n}^{\mathrm{2}} }{{n}^{\mathrm{4}} +\mathrm{1}}=.. \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 06/Mar/19 $${T}_{{n}}…

Let-a-i-gt-0-i-1-2-3-2016-If-a-1-a-2-a-2016-1-2016-2-then-1-a-1-1-a-2-1-a-2016-

Question Number 55904 by gunawan last updated on 06/Mar/19 $$\mathrm{Let}\:{a}_{{i}} >\mathrm{0},\:\forall_{{i}} =\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\ldots\mathrm{2016} \\ $$$$\mathrm{If}\:\left({a}_{\mathrm{1}} {a}_{\mathrm{2}} \ldots{a}_{\mathrm{2016}} \right)^{\frac{\mathrm{1}}{\mathrm{2016}}} =\mathrm{2} \\ $$$$\mathrm{then} \\ $$$$\left(\mathrm{1}+{a}_{\mathrm{1}} \right)\left(\mathrm{1}+{a}_{\mathrm{2}} \right)\ldots\left(\mathrm{1}+{a}_{\mathrm{2016}} \right)\geqslant……

lim-n-x-2n-x-2n-1-315-lim-n-x-2n-x-2n-1-2016-lim-n-x-2n-x-2n-1-

Question Number 55905 by gunawan last updated on 06/Mar/19 $$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left({x}_{\mathrm{2}{n}} +{x}_{\mathrm{2}{n}+\mathrm{1}} \right)=\mathrm{315} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left({x}_{\mathrm{2}{n}} +{x}_{\mathrm{2}{n}−\mathrm{1}} \right)=\mathrm{2016} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{{x}_{\mathrm{2}{n}} }{{x}_{\mathrm{2}{n}+\mathrm{1}} }=… \\ $$…

lim-x-1-x-1-p-1-x-1-q-1-

Question Number 121410 by john santu last updated on 07/Nov/20 $$\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\sqrt[{\mathrm{p}}]{\mathrm{x}}−\mathrm{1}}{\:\sqrt[{\mathrm{q}}]{\mathrm{x}}−\mathrm{1}}\:?\: \\ $$ Answered by TANMAY PANACEA last updated on 07/Nov/20 $${x}={t}^{{pq}} \\ $$$${li}\underset{{t}\rightarrow\mathrm{1}}…

1-lim-x-0-1-e-2x-sin-3x-4x-2-lim-x-0-1-e-2x-sin-3x-4x-

Question Number 121302 by liberty last updated on 06/Nov/20 $$\:\left(\mathrm{1}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}−\mathrm{e}^{\mathrm{2x}} \right)\mathrm{sin}\:\left(\mathrm{3x}\right)}{\mid\mathrm{4x}\mid}\:?\: \\ $$$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\lfloor\:\frac{\left(\mathrm{1}−\mathrm{e}^{\mathrm{2x}} \right)\mathrm{sin}\:\mathrm{3x}}{\mid\mathrm{4x}\mid}\:\rfloor\:? \\ $$ Answered by bemath last updated on 06/Nov/20…