Menu Close

Category: Limits

lim-x-x-4-1-5-x-1-1-5-x-1-5-

Question Number 119977 by bramlexs22 last updated on 28/Oct/20 $$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\sqrt[{\mathrm{5}}]{{x}^{\mathrm{4}} }\left(\sqrt[{\mathrm{5}}]{{x}+\mathrm{1}}−\sqrt[{\mathrm{5}}]{{x}}\:\right)\right)=? \\ $$ Answered by bemath last updated on 28/Oct/20 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\sqrt[{\mathrm{5}}]{{x}^{\mathrm{5}} +{x}^{\mathrm{4}} }−\sqrt[{\mathrm{5}}]{{x}^{\mathrm{5}}…

Question-185510

Question Number 185510 by mathlove last updated on 23/Jan/23 Answered by mahdipoor last updated on 23/Jan/23 $$\mathrm{6}{x}−\mathrm{8}{sin}\left({x}\right)+{sin}\left(\mathrm{2}{x}\right)= \\ $$$$\mathrm{6}{x}−\mathrm{8}\left({x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+\frac{{x}^{\mathrm{5}} }{\mathrm{5}!}−\frac{{x}^{\mathrm{7}} }{\mathrm{7}!}+….\right)+ \\ $$$$\left(\mathrm{2}{x}−\frac{\mathrm{8}{x}^{\mathrm{3}} }{\mathrm{3}!}+\frac{\mathrm{32}{x}^{\mathrm{5}}…

Question-54341

Question Number 54341 by Meritguide1234 last updated on 02/Feb/19 Answered by iv@0uja last updated on 03/Feb/19 $$\underset{{t}=\mathrm{0}} {\overset{{s}} {\sum}}\:_{{s}} {C}_{{t}} \left(\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}}\right)^{{t}} =\left(\mathrm{1}+\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}}\right)^{{s}} =\left(\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{2}}\right)^{{s}} \\ $$$$\underset{{s}=\mathrm{0}}…

lim-x-x-2-1-x-x-1-x-x-3-1-x-x-1-x-

Question Number 185405 by greougoury555 last updated on 21/Jan/23 $$\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\left({x}+\mathrm{2}\right)^{\mathrm{1}/{x}} −{x}^{\mathrm{1}/{x}} }{\left({x}+\mathrm{3}\right)^{\mathrm{1}/{x}} −{x}^{\mathrm{1}/{x}} }\:=? \\ $$ Answered by Frix last updated on 22/Jan/23 $$=\underset{{t}\rightarrow\mathrm{0}^{+}…

If-a-b-c-and-d-are-constants-such-that-lim-x-0-ax-2-sin-bx-sin-cx-sin-dx-3x-2-5x-4-7x-6-8-find-the-value-of-the-sum-a-b-c-d-

Question Number 185406 by greougoury555 last updated on 21/Jan/23 $${If}\:{a},{b},{c}\:{and}\:{d}\:{are}\:{constants}\:{such}\:{that} \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{ax}^{\mathrm{2}} +\mathrm{sin}\:{bx}+\mathrm{sin}\:{cx}+\mathrm{sin}\:{dx}}{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{5}{x}^{\mathrm{4}} +\mathrm{7}{x}^{\mathrm{6}} }=\mathrm{8} \\ $$$${find}\:{the}\:{value}\:{of}\:{the}\:{sum}\:{a}+{b}+{c}+{d} \\ $$ Answered by witcher3 last…