Question Number 49803 by maxmathsup by imad last updated on 10/Dec/18 $${find}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:\:\frac{\left({sinx}\right)^{{x}} \:−\mathrm{1}}{{x}^{{sinx}} \:−\mathrm{1}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 49802 by maxmathsup by imad last updated on 10/Dec/18 $${find}\:{lim}_{{x}\rightarrow{e}} \:\:\:\frac{{e}^{{x}} \:−{e}^{{e}} }{{x}^{{e}} \:−{e}^{{e}} } \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on…
Question Number 49800 by maxmathsup by imad last updated on 10/Dec/18 $${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\frac{\sqrt{\mathrm{1}+{x}+{x}^{\mathrm{2}} }−\sqrt{\mathrm{1}+\mathrm{2}{x}+{x}^{\mathrm{3}} }}{{x}^{\mathrm{2}} } \\ $$ Answered by afachri last updated on 12/Dec/18…
Question Number 115320 by john santu last updated on 25/Sep/20 $$\left(\mathrm{1}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:^{\mathrm{6}} \left(\mathrm{2}{x}\right)\mathrm{cos}\:^{\mathrm{3}} \left(\mathrm{3}{x}\right)}{\mathrm{3}{x}^{\mathrm{2}} }\:? \\ $$$$\left(\mathrm{2}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{4}{x}+\mathrm{2sin}\:^{\mathrm{2}} {x}.\mathrm{cos}\:\mathrm{4}{x}}{{x}^{\mathrm{2}} .\mathrm{cos}\:\mathrm{3}{x}}? \\ $$$$\left(\mathrm{3}\right)\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:{x}−\mathrm{2cos}\:^{\mathrm{2}} {x}−\mathrm{1}}{\:\sqrt{\mathrm{sin}\:^{\mathrm{3}} {x}}−\sqrt{\mathrm{sin}\:{x}}}\:?\:…
Question Number 115318 by bemath last updated on 25/Sep/20 $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}\mathrm{sin}\:{x}}{\mathrm{2sin}\:^{\mathrm{2}} \left(\mathrm{3}{x}\right)−{x}^{\mathrm{2}} \mathrm{cos}\:{x}} \\ $$ Answered by bobhans last updated on 25/Sep/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}\:\mathrm{sin}\:{x}}{\mathrm{2}\:\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{3}{x}\right)−{x}^{\mathrm{2}}…
Question Number 180815 by mnjuly1970 last updated on 17/Nov/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 115195 by bemath last updated on 24/Sep/20 $$\underset{{x}\rightarrow\frac{\pi}{\mathrm{8}}} {\mathrm{lim}}\:\frac{\mathrm{cot}\:\mathrm{4}{x}−\mathrm{cos}\:\mathrm{4}{x}}{\left(\pi−\mathrm{8}{x}\right)^{\mathrm{3}} }\:?\: \\ $$ Answered by bobhans last updated on 24/Sep/20 $${let}\:{x}\:=\:\frac{\pi}{\mathrm{8}}+{p}\:;\:{p}\rightarrow\mathrm{0} \\ $$$$\underset{{p}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cot}\:\left(\mathrm{4}{p}+\frac{\pi}{\mathrm{2}}\right)−\mathrm{cos}\:\left(\mathrm{4}{p}+\frac{\pi}{\mathrm{2}}\right)}{\left(−\mathrm{8}{p}\right)^{\mathrm{3}}…
Question Number 115174 by bemath last updated on 24/Sep/20 $$\:\:\:\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\left(\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{{x}}\right)\right)}{\:\sqrt{{x}−\mathrm{1}}}\:=\:? \\ $$ Answered by bobhans last updated on 24/Sep/20 $$\:{let}\:\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{{x}}\right)\:=\:\psi\:\Rightarrow\:\frac{\mathrm{1}}{{x}}\:=\:\mathrm{cos}\:\psi\: \\ $$$$\:{and}\:\mathrm{tan}\:\psi\:=\:\sqrt{{x}^{\mathrm{2}}…
Question Number 115167 by bemath last updated on 28/Sep/20 $$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sec}\:\:\left(\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{1}−{x}\right)\right)}{\mathrm{3}\sqrt{{x}}}\:=\:? \\ $$ Answered by bobhans last updated on 28/Sep/20 $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sec}\:\:\left(\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{1}−{x}\right)\right)}{\mathrm{3}\sqrt{{x}}}\:=? \\…
Question Number 115162 by john santu last updated on 24/Sep/20 $$\:\left(\mathrm{1}\right)\:\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\mathrm{arc}\:\mathrm{sin}\:\left(\frac{\mathrm{1}−\sqrt{{x}}}{\mathrm{1}−{x}}\right)\:=? \\ $$$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{e}^{{x}^{\mathrm{3}} +\sqrt{\mathrm{cos}\:\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)}} \:=? \\ $$$$\left(\mathrm{3}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{csc}\:{x}\:.\mathrm{sin}\:\left(\mathrm{sin}\:{x}\right)\:=? \\ $$ Answered by…