Menu Close

Category: Limits

1-lim-x-5x-4-3x-9-4x-2-lim-x-5-4x-3x-2-4-3x-3x-2-2x-

Question Number 112855 by ruwedkabeh last updated on 10/Sep/20 $$ \\ $$$$\mathrm{1}.\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{5}{x}+\mathrm{4}}−\sqrt{\mathrm{3}{x}+\mathrm{9}}}{\mathrm{4}{x}}=… \\ $$$$ \\ $$$$\mathrm{2}.\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{5}−\mathrm{4}{x}+\mathrm{3}{x}^{\mathrm{2}} }−\sqrt{\mathrm{4}−\mathrm{3}{x}+\mathrm{3}{x}^{\mathrm{2}} }}{\mathrm{2}{x}}=… \\ $$$$ \\ $$ Answered…

Without-L-Hopital-lim-x-0-a-x-cot-x-a-

Question Number 112851 by bemath last updated on 10/Sep/20 $$\mathrm{Without}\:\mathrm{L}'\mathrm{Hopital} \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{a}}{\mathrm{x}}\:−\:\mathrm{cot}\:\frac{\mathrm{x}}{\mathrm{a}}\right)\:? \\ $$ Answered by bobhans last updated on 10/Sep/20 $$\:\mathrm{set}\:\frac{\mathrm{x}}{\mathrm{a}}\:=\:\mathrm{t}\:\rightarrow\frac{\mathrm{a}}{\mathrm{x}}\:=\:\frac{\mathrm{1}}{\mathrm{t}} \\ $$$$\:\mathrm{L}=\:\underset{\mathrm{t}\rightarrow\mathrm{0}}…

y-log-2-log-2-x-then-dy-dx-

Question Number 47174 by vajpaithegrate@gmail.com last updated on 05/Nov/18 $$\mathrm{y}=\mathrm{log}_{\mathrm{2}} \left(\mathrm{log}_{\mathrm{2}} ^{\mathrm{x}} \right)\mathrm{then}\:\:\frac{\mathrm{dy}}{\mathrm{dx}}= \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 05/Nov/18 $${y}={log}_{\mathrm{2}} {t}=\frac{{lnt}}{{ln}\mathrm{2}} \\…

1-lim-x-a-x-a-cosec-pix-a-2-x-2-1-dx-by-using-Euler-s-substitution-

Question Number 112651 by bemath last updated on 09/Sep/20 $$\left(\mathrm{1}\right)\underset{{x}\rightarrow\mathrm{a}} {\mathrm{lim}}\:\left(\mathrm{x}−\mathrm{a}\right)\:\mathrm{cosec}\:\left(\frac{\pi\mathrm{x}}{\mathrm{a}}\right)\:? \\ $$$$\left(\mathrm{2}\right)\:\int\:\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{dx}\:,\:\mathrm{by}\:\mathrm{using}\:\mathrm{Euler}'\mathrm{s} \\ $$$$\mathrm{substitution} \\ $$ Answered by john santu last updated on…

Determine-a-b-c-d-and-e-such-that-1-lim-x-0-cos-ax-bx-3-cx-2-dx-e-x-4-2-3-2-find-general-solution-3xy-2-y-4y-3-x-3-

Question Number 112650 by bemath last updated on 09/Sep/20 $$\mathrm{Determine}\:\mathrm{a},\mathrm{b},\mathrm{c},\mathrm{d}\:\mathrm{and}\:\mathrm{e}\:\mathrm{such}\:\mathrm{that} \\ $$$$\left(\mathrm{1}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\mathrm{ax}+\mathrm{bx}^{\mathrm{3}} +\mathrm{cx}^{\mathrm{2}} +\mathrm{dx}+\mathrm{e}}{\mathrm{x}^{\mathrm{4}} }\:=\:\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{find}\:\mathrm{general}\:\mathrm{solution}\::\:\mathrm{3xy}^{\mathrm{2}} \:\mathrm{y}'\:=\:\mathrm{4y}^{\mathrm{3}} −\mathrm{x}^{\mathrm{3}} \: \\ $$ Answered by…

Question-178178

Question Number 178178 by cortano1 last updated on 13/Oct/22 Answered by Frix last updated on 14/Oct/22 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}−\mathrm{sin}^{−\mathrm{1}} \:{x}}{{x}^{\mathrm{2}} \mathrm{sin}^{−\mathrm{1}} \:{x}}\:=_{\left[{t}=\mathrm{sin}^{−\mathrm{1}} \:{x}\right]} \\ $$$$=−\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{t}−\mathrm{sin}\:{t}}{{t}\mathrm{sin}^{\mathrm{2}}…

1-lim-x-0-sinh-x-x-1-x-2-2-lim-x-0-x-ln-tan-x-

Question Number 112637 by bemath last updated on 09/Sep/20 $$\left(\mathrm{1}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{sinh}\:\mathrm{x}}{\mathrm{x}}\right)^{\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }} ? \\ $$$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{x}\:\mathrm{ln}\:\left(\mathrm{tan}\:\mathrm{x}\right)\:? \\ $$ Answered by john santu last updated on…

Question-178161

Question Number 178161 by mathlove last updated on 13/Oct/22 Commented by CElcedricjunior last updated on 15/Oct/22 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\boldsymbol{\mathrm{cosx}}−\boldsymbol{\mathrm{cos}}\mathrm{3}\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}}{\boldsymbol{\mathrm{ax}}^{\mathrm{2}} }=\frac{\mathrm{0}}{\mathrm{0}}=\boldsymbol{\mathrm{FI}} \\ $$$$\boldsymbol{{to}}\:\boldsymbol{{apply}}\:\boldsymbol{{hospital}}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{−\boldsymbol{{sinx}}}{\boldsymbol{{a}}\mathrm{2}\boldsymbol{{x}}}+\frac{\mathrm{3}\boldsymbol{{sin}}\mathrm{3}\boldsymbol{{x}}}{\mathrm{2}\boldsymbol{{ax}}}+\frac{\boldsymbol{{sin}}\mathrm{2}\boldsymbol{{x}}}{\mathrm{2}\boldsymbol{{ax}}}…