Menu Close

Category: Limits

Question-109068

Question Number 109068 by n0y0n last updated on 20/Aug/20 Answered by Dwaipayan Shikari last updated on 20/Aug/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left({cos}\mathrm{5}{x}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{{x}^{\mathrm{4}} }} =\left(\mathrm{1}−\frac{\mathrm{25}{x}^{\mathrm{4}} }{\mathrm{2}}\right)^{\frac{−\mathrm{2}}{{x}^{\mathrm{4}} .\mathrm{25}}.\left(\frac{−\mathrm{25}}{\mathrm{2}}\right)} ={e}^{−\frac{\mathrm{25}}{\mathrm{2}}}…

Question-109067

Question Number 109067 by n0y0n last updated on 20/Aug/20 Answered by Aziztisffola last updated on 20/Aug/20 sin(x)ln(cot2(x))=sin(x)ln(cos2(x)sin2(x))$$\:=\mathrm{sin}\left(\mathrm{x}\right)\left(\mathrm{ln}\left(\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}\right)\right)−\mathrm{sin}\left(\mathrm{x}\right)\mathrm{ln}\left(\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)\right)\right. \