Menu Close

Category: Limits

lim-n-n-2-1-cos-1-n-1-cos-1-n-1-cos-1-n-

Question Number 173192 by mathlove last updated on 08/Jul/22 $$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{n}^{\mathrm{2}} \sqrt{\left(\mathrm{1}−{cos}\frac{\mathrm{1}}{{n}}\right)\sqrt{\left(\mathrm{1}−{cos}\frac{\mathrm{1}}{{n}}\right)\sqrt{\left(\mathrm{1}−{cos}\frac{\mathrm{1}}{{n}}\right)……\infty}}}=? \\ $$ Answered by Frix last updated on 08/Jul/22 $${u}=\sqrt{{t}\sqrt{{t}\sqrt{{t}\sqrt{…}}}}\:\Leftrightarrow\:{u}=\sqrt{{tu}}\:\Leftrightarrow\:{u}={t} \\ $$$$ \\…

lim-x-0-ln-2-e-x-x-lnx-

Question Number 173190 by mathlove last updated on 08/Jul/22 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{ln}\left(\mathrm{2}−{e}^{{x}} \right)}{{x}+{lnx}}=? \\ $$ Answered by thfchristopher last updated on 08/Jul/22 $$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{−{e}^{{x}} }{\mathrm{2}−{e}^{{x}} }}{\mathrm{1}+\frac{\mathrm{1}}{{x}}}…

Calculate-1-2-3-4-5-

Question Number 107598 by mathDivergent last updated on 11/Aug/20 $$\:\:\:\:\mathrm{Calculate}:\:\:\sqrt{\mathrm{1}\:+\:\sqrt{\mathrm{2}\:+\:\sqrt{\mathrm{3}\:+\:\sqrt{\mathrm{4}\:+\:\sqrt{\mathrm{5}\:+\:…}}}}} \\ $$ Commented by Her_Majesty last updated on 11/Aug/20 $$\approx\mathrm{1}.\mathrm{75793275662} \\ $$ Commented by Dwaipayan…

lim-x-x-cos-x-x-sin-x-

Question Number 41998 by Joel578 last updated on 16/Aug/18 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{{x}\:+\:\mathrm{cos}\:{x}}{{x}\:+\:\mathrm{sin}\:{x}} \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 16/Aug/18 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}+\frac{{cosx}}{{x}}}{\mathrm{1}+\frac{{sinx}}{{x}}} \\ $$$${the}\:{value}\:{of}\:{sinx}\:{lies}\:{in}\:{between}\:\pm\mathrm{1}\:{whatever} \\…

BeMath-lim-t-0-1-cos-2t-sin-pi-2-t-cos-2t-

Question Number 107516 by bemath last updated on 11/Aug/20 $$\:\:\:\:\circledcirc\mathcal{B}{e}\mathcal{M}{ath}\circledcirc \\ $$$$\:\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\sqrt{\mathrm{cos}\:\mathrm{2}{t}}}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−{t}\right)−\mathrm{cos}\:\mathrm{2}{t}}\:? \\ $$ Answered by bemath last updated on 11/Aug/20 $$\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{2}{t}}{\mathrm{cos}\:{t}−\mathrm{cos}\:\mathrm{2}{t}}\:×\:\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{1}+\sqrt{\mathrm{cos}\:\mathrm{2}{t}}}…

Given-a-R-1-1-Show-that-x-R-1-2acos-x-a-2-gt-0-2-Show-that-k-1-n-1-2acos-2kpi-n-a-2-k-1-n-a-e-2ikpi-n-a-e-2ikpi-n-3-Deduce-that-

Question Number 107500 by Ar Brandon last updated on 11/Aug/20 $$\mathrm{Given}\:\mathrm{a}\:\in\mathbb{R}−\left\{\pm\mathrm{1}\right\} \\ $$$$\mathrm{1}.\:\mathrm{Show}\:\mathrm{that}\:\forall\mathrm{x}\in\mathbb{R}\:\mathrm{1}−\mathrm{2acos}\left(\mathrm{x}\right)+\mathrm{a}^{\mathrm{2}} >\mathrm{0} \\ $$$$\mathrm{2}.\:\mathrm{Show}\:\mathrm{that}; \\ $$$$\:\:\:\:\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\prod}}\left(\mathrm{1}−\mathrm{2acos}\left(\frac{\mathrm{2k}\pi}{\mathrm{n}}\right)+\mathrm{a}^{\mathrm{2}} \right)=\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\prod}}\left(\mathrm{a}−\mathrm{e}^{\mathrm{2ik}\pi/\mathrm{n}} \right)\left(\mathrm{a}−\mathrm{e}^{−\mathrm{2ik}\pi/\mathrm{n}} \right)…