Question Number 174287 by Engr_Jidda last updated on 28/Jul/22 Answered by haf last updated on 28/Jul/22 $${use}\:\:{ln}\:{function} \\ $$ Commented by Engr_Jidda last updated on…
Question Number 43187 by ajfour last updated on 08/Sep/18 Commented by ajfour last updated on 08/Sep/18 $${mass}\:{of}\:\left({toy}+{fuel}\right)=\:{M}+{m} \\ $$$${exhaust}\:{speed}\:\left({relative}\right)\:=\:{u} \\ $$$${friction}\:{coefficient}\:=\mu \\ $$$${Find}\:\left(\boldsymbol{{i}}\right)\:\boldsymbol{{maximum}}\:\boldsymbol{{velocity}} \\ $$$$\left(\boldsymbol{{ii}}\right)\:\boldsymbol{{Determine}}\:\boldsymbol{{how}}\:\boldsymbol{{far}}\:\boldsymbol{{can}}\:\boldsymbol{{it}}\:\boldsymbol{{go}}.…
Question Number 42772 by nelva last updated on 02/Sep/18 $$\mathrm{mag}\int\mathrm{2x}+\mathrm{x}^{\mathrm{3}} \\ $$$$= \\ $$ Commented by maxmathsup by imad last updated on 02/Sep/18 $${what}\:{mean}\:{mag}? \\…
Question Number 42670 by Tawa1 last updated on 31/Aug/18 $$\mathrm{If}\:\:\mathrm{a},\:\mathrm{b}\:\mathrm{and}\:\mathrm{c}\:\:\mathrm{are}\:\mathrm{in}\:\mathrm{a}\:\mathrm{GP}.\:\:\mathrm{Prove}\:\mathrm{that}\:\:\:\mathrm{log}_{\mathrm{n}} \mathrm{a}\:,\:\:\mathrm{log}_{\mathrm{n}} \mathrm{b}\:\:,\:\:\mathrm{log}_{\mathrm{n}} \mathrm{c}\:\:\:\mathrm{are}\:\mathrm{in}\:\mathrm{AP} \\ $$ Commented by maxmathsup by imad last updated on 31/Aug/18 $${we}\:{have}\:\:\frac{{b}}{{a}}\:=\frac{{c}}{{b}}\:\Rightarrow{b}^{\mathrm{2}}…
Question Number 42549 by Tawa1 last updated on 27/Aug/18 $$\mathrm{If}\:\:\:\mathrm{y}\:=\:\mathrm{a}^{\frac{\mathrm{1}}{\mathrm{1}\:−\:\mathrm{log}_{\mathrm{a}} \mathrm{x}}} \:\:\:\:\:\mathrm{and}\:\:\:\:\:\:\:\:\mathrm{z}\:=\:\mathrm{a}^{\frac{\mathrm{1}}{\mathrm{1}\:−\:\mathrm{log}_{\mathrm{a}} \mathrm{y}}} \:\:.\:\:\mathrm{show}\:\mathrm{that}\:\:\:\:\:\mathrm{x}\:=\:\mathrm{a}^{\frac{\mathrm{1}}{\mathrm{1}\:−\:\mathrm{log}_{\mathrm{a}} \mathrm{z}}} \\ $$ Answered by math1967 last updated on 27/Aug/18 $${log}_{{a}}…
Question Number 41797 by Tawa1 last updated on 12/Aug/18 $$\mathrm{Find}\:\mathrm{x}:\:\:\:\:\:\:\:\:\mathrm{48log}_{\mathrm{a}} \mathrm{4}\:\:+\:\:\mathrm{5log}_{\mathrm{4}} \mathrm{a}\:\:=\:\:\frac{\mathrm{a}}{\mathrm{8}} \\ $$ Answered by alex041103 last updated on 13/Aug/18 $${log}_{{b}} {a}=\frac{{lna}}{{lnb}}\:{and}\:{log}_{{a}} {b}=\frac{{lnb}}{{lna}} \\…
Question Number 107318 by bemath last updated on 10/Aug/20 $$\:\:\:\:\:\circledcirc{bemath}\circledcirc \\ $$$$\mathrm{6}^{\mathrm{log}\:_{\left({x}−\mathrm{1}\right)} \left(\frac{\mathrm{20}−\mathrm{12}{x}}{{x}−\mathrm{7}}\right)} −\mathrm{36}\:>\mathrm{0} \\ $$ Answered by bobhans last updated on 10/Aug/20 $$\:\:\:\:\:\:\:\:\:\circledast\mathcal{BOBHANS}\circledast \\…
Question Number 107304 by bemath last updated on 10/Aug/20 $$\:\:\:\curlyvee{bemath}\curlyvee \\ $$$$\left(\mathrm{1}\right){Find}\:{domain}\:{of}\:{function}\: \\ $$$${f}\left({x}\right)=\:\sqrt{\mathrm{log}\:_{\mathrm{0}.\mathrm{2}} \left(\frac{{x}+\mathrm{2}}{{x}−\mathrm{1}}\right)−\mathrm{1}}\: \\ $$$$\left(\mathrm{2}\right)\:\frac{\mathrm{sin}\:^{\mathrm{2}} \left(\frac{\mathrm{9}\pi}{\mathrm{8}}−\mathrm{2}{x}\right)−\mathrm{sin}\:^{\mathrm{2}} \left(\frac{\mathrm{7}\pi}{\mathrm{8}}−\mathrm{2}{x}\right)}{\mathrm{sin}\:\left(\mathrm{2018}\pi+\mathrm{4}{x}\right)}=? \\ $$ Answered by bobhans last…
Question Number 107153 by bemath last updated on 09/Aug/20 $$\:\:\:\:\:\:@{bemath}@ \\ $$$$\left(\frac{\mathrm{14}}{\mathrm{5}}\right)^{\frac{\mathrm{28}}{\:\sqrt{{x}}}−\mathrm{5}} =\:\left(\frac{\mathrm{5}}{\mathrm{14}}\right)^{\frac{\mathrm{5}}{\:\sqrt{{x}}}−\mathrm{160}} \\ $$ Answered by bobhans last updated on 09/Aug/20 $$\:\:\:\:\:\:\:\varepsilon\mathrm{bobhans}\varepsilon \\ $$$$\left(\frac{\mathrm{14}}{\mathrm{5}}\right)^{\frac{\mathrm{28}}{\:\sqrt{\mathrm{x}}}−\mathrm{5}}…
Question Number 172601 by Mikenice last updated on 29/Jun/22 Answered by Rasheed.Sindhi last updated on 30/Jun/22 $$\bullet\mathrm{log}_{\mathrm{2}} \left(\frac{\mathrm{75}}{\mathrm{16}}\right)−\mathrm{log}_{\mathrm{2}} \left[\frac{\left(\frac{\mathrm{25}}{\mathrm{81}}\right)^{\mathrm{3}/\mathrm{4}} \left(\frac{\mathrm{25}}{\mathrm{81}}\right)^{\mathrm{1}/\mathrm{4}} }{\left(\frac{\mathrm{125}}{\mathrm{405}}\right)^{\mathrm{1}/\mathrm{2}} }\right]^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{log}_{\mathrm{2}} \mathrm{2}^{\mathrm{15}}…