Question Number 172082 by Mikenice last updated on 23/Jun/22 $${solve} \\ $$$${log}_{\mathrm{0}.\mathrm{5}} ^{\mathrm{2}} {x}+{log}_{\mathrm{0}.\mathrm{5}} {x}−\mathrm{2}\underset{−} {<}\mathrm{0} \\ $$ Commented by mokys last updated on 23/Jun/22…
Question Number 172078 by Mikenice last updated on 23/Jun/22 $${solve} \\ $$$$\frac{\mathrm{2}{logx}}{{log}\left(\mathrm{5}{x}−\mathrm{4}\right)}=\mathrm{1} \\ $$ Answered by Rasheed.Sindhi last updated on 23/Jun/22 $$\frac{\mathrm{2}{logx}}{{log}\left(\mathrm{5}{x}−\mathrm{4}\right)}=\mathrm{1} \\ $$$$\mathrm{2}{logx}={log}\left(\mathrm{5}{x}−\mathrm{4}\right) \\…
Question Number 172076 by Mikenice last updated on 23/Jun/22 $${solve} \\ $$$${log}\left(\mathrm{64}\sqrt[{\mathrm{24}}]{\mathrm{2}^{{x}^{\mathrm{2}} −\mathrm{40}{x}} }\right)=\mathrm{0} \\ $$ Answered by puissant last updated on 23/Jun/22 $$\Rightarrow{log}\mathrm{64}+\frac{\mathrm{1}}{\mathrm{24}}\left({x}^{\mathrm{2}} −\mathrm{40}{x}\right){log}\mathrm{2}=\mathrm{0}…
Question Number 172074 by Mikenice last updated on 23/Jun/22 $${solve}: \\ $$$$\mathrm{5}^{{logx}} =\mathrm{50}−{x}^{{log}\mathrm{5}} \\ $$ Answered by aleks041103 last updated on 23/Jun/22 $$\mathrm{5}^{{logx}} =\mathrm{10}^{{log}\mathrm{5}\:{logx}} =\left(\mathrm{10}^{{logx}}…
Question Number 172028 by Mikenice last updated on 23/Jun/22 $${solve}: \\ $$$$\frac{{log}_{\mathrm{2}} \left(\mathrm{9}−\mathrm{2}^{\left.{x}\right)} \right.}{{log}_{\mathrm{2}} \mathrm{2}^{\left(\mathrm{3}−{x}\right)} }={log}_{\mathrm{2}} \mathrm{2} \\ $$ Answered by Rasheed.Sindhi last updated on…
Question Number 171990 by Mikenice last updated on 22/Jun/22 $${solve}: \\ $$$${log}_{\mathrm{7}} \mathrm{2}\:+\:{log}_{\mathrm{49}} {x}\:={log}_{\mathrm{7}} \sqrt{\mathrm{3}} \\ $$ Answered by nurtani last updated on 23/Jun/22 $$\Leftrightarrow\:{log}_{\mathrm{7}}…
Question Number 40873 by scientist last updated on 28/Jul/18 $${If}\:{a}^{\mathrm{3}} +{b}^{\mathrm{3}} =\mathrm{0},\:\:{prove}\:{that}\:\mathrm{log}\:\left({a}+{b}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{log}\:{a}\:+\mathrm{log}\:{b}\:+\mathrm{log}\:\mathrm{3}\right) \\ $$$$\left[{given}\:{a}+{b}\neq\mathrm{0}\right] \\ $$ Answered by math1967 last updated on 29/Jul/18 $${a}^{\mathrm{3}} +{b}^{\mathrm{3}}…
Question Number 40872 by scientist last updated on 28/Jul/18 $${If}\:{a}^{\mathrm{3}} +{b}^{\mathrm{3}} =\mathrm{0},\:\:{prove}\:{that}\:\mathrm{log}\:\left({a}+{b}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{log}\:{a}\:+\mathrm{log}\:{b}\:+\mathrm{log}\:\mathrm{3}\right) \\ $$$$\left[{given}\:{a}+{b}\neq\mathrm{0}\right] \\ $$ Commented by MrW3 last updated on 29/Jul/18 $${I}\:{don}'{t}\:{think}\:{there}\:{are}\:{such}\:{real}\:{values} \\…
Question Number 106024 by john santu last updated on 02/Aug/20 $$\mathrm{log}\:_{\mathrm{4}} \left(\mathrm{5x}−\mathrm{6}\right).\mathrm{log}\:_{\mathrm{x}} \left(\mathrm{256}\right)=\mathrm{8} \\ $$ Commented by Dwaipayan Shikari last updated on 02/Aug/20 $$\left\{\mathrm{2},\mathrm{3}\right\} \\…
Question Number 171477 by alcohol last updated on 16/Jun/22 Terms of Service Privacy Policy Contact: info@tinkutara.com