Menu Close

Category: Logarithms

solve-5-24-x-10-5-24-x-

Question Number 172084 by Mikenice last updated on 23/Jun/22 $${solve} \\ $$$$\left(\sqrt{\mathrm{5}+\sqrt{\mathrm{24}}}\right)^{{x}} −\mathrm{10}=\left(\sqrt{\mathrm{5}−\sqrt{\mathrm{24}}}\right)^{{x}} \\ $$ Answered by mr W last updated on 23/Jun/22 $${let}\:{t}=\left(\sqrt{\mathrm{5}+\sqrt{\mathrm{24}}}\right)^{{x}} >\mathrm{0}…

solve-2logx-log-5x-4-1-

Question Number 172078 by Mikenice last updated on 23/Jun/22 $${solve} \\ $$$$\frac{\mathrm{2}{logx}}{{log}\left(\mathrm{5}{x}−\mathrm{4}\right)}=\mathrm{1} \\ $$ Answered by Rasheed.Sindhi last updated on 23/Jun/22 $$\frac{\mathrm{2}{logx}}{{log}\left(\mathrm{5}{x}−\mathrm{4}\right)}=\mathrm{1} \\ $$$$\mathrm{2}{logx}={log}\left(\mathrm{5}{x}−\mathrm{4}\right) \\…

solve-log-64-2-x-2-40x-1-24-0-

Question Number 172076 by Mikenice last updated on 23/Jun/22 $${solve} \\ $$$${log}\left(\mathrm{64}\sqrt[{\mathrm{24}}]{\mathrm{2}^{{x}^{\mathrm{2}} −\mathrm{40}{x}} }\right)=\mathrm{0} \\ $$ Answered by puissant last updated on 23/Jun/22 $$\Rightarrow{log}\mathrm{64}+\frac{\mathrm{1}}{\mathrm{24}}\left({x}^{\mathrm{2}} −\mathrm{40}{x}\right){log}\mathrm{2}=\mathrm{0}…