Menu Close

Category: Logarithms

x-1-x-2-log-x-1-x-2-12-5-find-x-2-answer-should-not-be-in-decimal-

Question Number 222007 by klipto last updated on 14/Jun/25 $$\boldsymbol{\mathrm{x}}\sqrt{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }+\boldsymbol{\mathrm{log}}\left(\boldsymbol{\mathrm{x}}+\sqrt{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\right)=\mathrm{12}.\mathrm{5} \\ $$$$\mathrm{find}\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:\left(\mathrm{answer}\:\mathrm{should}\:\mathrm{not}\:\mathrm{be}\:\mathrm{in}\:\mathrm{decimal}\right) \\ $$ Commented by AntonCWX8 last updated on 15/Jun/25 $${Do}\:{you}\:{mean}\:{to}\:{find}\:{a}\:{close}\:{form}?…

If-log-10-7-a-then-log-10-1-70-

Question Number 221896 by fantastic last updated on 12/Jun/25 $${If}\:\mathrm{log}\underset{\mathrm{10}} {\:}\mathrm{7}={a}\:,{then}\:\mathrm{log}\underset{\mathrm{10}} {\:}\left(\frac{\mathrm{1}}{\mathrm{70}}\right)=? \\ $$ Answered by fantastic last updated on 12/Jun/25 $$\mathrm{log}\underset{\mathrm{10}} {\:}\mathrm{7}={a} \\ $$$$\:{so}\:\mathrm{10}^{{a}}…

Question-221760

Question Number 221760 by OmoloyeMichael last updated on 09/Jun/25 Answered by shunmisaki007 last updated on 09/Jun/25 $$\left(\mathrm{For}\:{x}>\mathrm{0}\:\mathrm{and}\:{x}\neq\mathrm{1}.\right) \\ $$$$\mathrm{log}_{{x}} \left(\frac{\mathrm{log}_{\mathrm{4}} \left({x}\right)}{\mathrm{log}_{\mathrm{4}} \left({x}\right)−\mathrm{3}}\right)^{\mathrm{log}_{\mathrm{3}} \left({x}\right)} =\mathrm{2} \\…

Prove-x-IR-n-IN-pi-2-0-ch-2xt-cos-2n-t-dt-e-x-2-n-pi-2-0-cos-2n-t-dt-

Question Number 221103 by Jgrads last updated on 24/May/25 $$\mathrm{Prove}\::\:\:\:\:\:\forall\mathrm{x}\in\mathrm{IR},\:\forall\mathrm{n}\in\mathrm{IN}^{\ast} \: \\ $$$$\underset{\:\mathrm{0}} {\int}^{\:\frac{\pi}{\mathrm{2}}} \mathrm{ch}\left(\mathrm{2xt}\right)\mathrm{cos}^{\mathrm{2n}} \left(\mathrm{t}\right)\:\mathrm{dt}\:\leqslant\:\mathrm{e}^{\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{n}}} \underset{\:\mathrm{0}} {\int}^{\:\frac{\pi}{\mathrm{2}}} \mathrm{cos}^{\mathrm{2n}} \left(\mathrm{t}\right)\:\mathrm{dt} \\ $$ Terms of…