Question Number 92135 by jagoll last updated on 05/May/20 $${a}^{{x}} \:=\:\mathrm{log}\:_{{a}} \:\left({x}\right) \\ $$$${a}=? \\ $$ Commented by Tony Lin last updated on 05/May/20 $${when}\:\mathrm{0}<{x}<{e}^{−{e}}…
Question Number 91862 by jagoll last updated on 03/May/20 $$\mathrm{log}_{\mathrm{2}} \left({x}\right)+\mathrm{log}_{\mathrm{3}} \left({x}\right)\:=\:\mathrm{1} \\ $$$${x}\:=? \\ $$ Commented by Tony Lin last updated on 03/May/20 $$\frac{{lnx}}{{ln}\mathrm{2}}+\frac{{lnx}}{{ln}\mathrm{3}}=\mathrm{1}…
Question Number 91681 by hmamarques1994@gmail.com last updated on 02/May/20 $$\: \\ $$$$\:\boldsymbol{\mathrm{Se}}\:\:\boldsymbol{\mathrm{f}}\left(\sqrt{\mathrm{3}^{\sqrt[{\mathrm{3}}]{\boldsymbol{\mathrm{x}}}} }\:+\:\mathrm{3}^{\sqrt[{\mathrm{3}}]{\boldsymbol{\mathrm{x}}}} \right)\:=\:\sqrt[{\mathrm{3}}]{\boldsymbol{\mathrm{x}}},\:\:\boldsymbol{\mathrm{calcule}}\:\:\frac{\boldsymbol{\mathrm{f}}\left(\mathrm{2}\right)}{\boldsymbol{\mathrm{f}}\left(\mathrm{1}\right)}\centerdot \\ $$$$\: \\ $$ Commented by john santu last updated on…
Question Number 91608 by mhmd last updated on 01/May/20 Commented by Tony Lin last updated on 01/May/20 $${let}\:{log}_{\mathrm{2}} {x}={t} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}{t}^{\mathrm{2}} −{t}+\mathrm{4}=\mathrm{0} \\ $$$${t}^{\mathrm{2}} −\mathrm{4}{t}+\mathrm{16}=\mathrm{0}…
Question Number 91177 by jagoll last updated on 28/Apr/20 $$\mathrm{6}^{\left(\mathrm{log}_{\mathrm{2}} \:{x}\right)^{\mathrm{2}} } \:+\:{x}^{\left(\mathrm{log}_{\mathrm{2}} \:{x}\right)} \:=\:\mathrm{12}\: \\ $$ Commented by jagoll last updated on 28/Apr/20 $${i}\:{have}\:{no}\:{idea}\:{to}\:{solve}\:{this}…
Question Number 25593 by behi.8.3.4.17@gmail.com last updated on 11/Dec/17 $$\boldsymbol{{if}}\:\::\:\:\:\boldsymbol{{log}}_{\mathrm{6}} ^{\mathrm{45}} =\boldsymbol{{x}}\:\:,\:\:\:\boldsymbol{{log}}_{\mathrm{18}} ^{\mathrm{24}} =\boldsymbol{{y}} \\ $$$$\boldsymbol{{then}}\::\:\:\:\boldsymbol{{log}}\:_{\mathrm{12}} ^{\mathrm{25}} \:=?\left(\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{x},\mathrm{y}\right) \\ $$ Answered by Rasheed.Sindhi last updated…
Question Number 25315 by ibraheem160 last updated on 08/Dec/17 $${if}\:{log}_{{a}\:} ^{{b}} ={log}_{{b}} ^{{c}} ={log}_{{c}} ^{{a}} .\:{show}\:{that}\:{a}={b}={c} \\ $$ Answered by prakash jain last updated on…
Question Number 25313 by ibraheem160 last updated on 08/Dec/17 $${show}\:{tbat}\:{log}_{{a}} ^{\left({a}^{\mathrm{2}} −{x}^{\left.\mathrm{2}\right)} \right.} =\mathrm{2}+{log}_{{a}} \left[\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right] \\ $$ Answered by jota+ last updated on…
Question Number 90806 by john santu last updated on 26/Apr/20 $$\mathrm{log}_{\left({x}+\mathrm{4}\right)} \left({x}^{\mathrm{2}} −\mathrm{8}{x}+\mathrm{12}\right)\:<\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{log}_{\mid{x}−\mathrm{2}\mid} \left(\mathrm{2}−{x}\right)^{\mathrm{2}} \\ $$ Commented by john santu last updated on 26/Apr/20 $$\Rightarrow\left(\mathrm{2}−{x}\right)^{\mathrm{2}}…
Question Number 90762 by Ar Brandon last updated on 25/Apr/20 $$\mathrm{2}^{\mathrm{x}} +\mathrm{2}^{\mathrm{3x}} =\mathrm{16} \\ $$$$\mathrm{solve}\:\mathrm{for}\:\mathrm{x} \\ $$ Answered by MJS last updated on 25/Apr/20 $$\mathrm{2}^{{x}}…