Menu Close

Category: Logarithms

log-3-2x-x-2-sin-x-3-cos-x-sin-3x-1-log-2-3-2x-x-2-

Question Number 82066 by john santu last updated on 18/Feb/20 $$\mathrm{log}_{\mathrm{3}+\mathrm{2}{x}−{x}^{\mathrm{2}} } \:\left(\frac{\mathrm{sin}\:{x}+\sqrt{\mathrm{3}}\mathrm{cos}\:{x}}{\mathrm{sin}\:\mathrm{3}{x}}\right)\:=\:\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{2}} \left(\mathrm{3}+\mathrm{2}{x}−{x}^{\mathrm{2}} \right)}\: \\ $$ Commented by john santu last updated on 18/Feb/20…

log-2-log-3-log-2-2-x-1-lt-1-has-solution-1-a-26-lt-x-lt-b-find-a-

Question Number 81364 by jagoll last updated on 12/Feb/20 $$\mathrm{log}_{\mathrm{2}} \:\left(\mathrm{log}_{\mathrm{3}} \:\left(\mathrm{log}_{\mathrm{2}} \:\frac{\mathrm{2}}{\mathrm{x}}\right)−\mathrm{1}\right)\:<\:\mathrm{1}\: \\ $$$$\mathrm{has}\:\mathrm{solution}\:\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{26}} }<\mathrm{x}<\mathrm{b}.\:\mathrm{find}\:\mathrm{a}\:? \\ $$ Commented by john santu last updated on…

Question-146849

Question Number 146849 by Apor_mu_calculus last updated on 16/Jul/21 Commented by Cyriille last updated on 16/Jul/21 $$\mathrm{To}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{equation}\:\mathrm{you}\:\mathrm{have}\: \\ $$$$\mathrm{to}\:\mathrm{plot}\:\mathrm{2}\:\mathrm{graphs}\:; \\ $$$${y}={x}^{\mathrm{2}} \:\:\:{and} \\ $$$${y}=\mathrm{16}^{{x}} \\…

How-many-values-are-there-for-W-x-where-x-lt-1-e-mrW1-Sir-please-answer-

Question Number 15680 by Tinkutara last updated on 12/Jun/17 $$\mathrm{How}\:\mathrm{many}\:\mathrm{values}\:\mathrm{are}\:\mathrm{there}\:\mathrm{for}\:{W}\left({x}\right) \\ $$$$\mathrm{where}\:{x}\:<\:\frac{−\mathrm{1}}{{e}}\:?\:\mathrm{mrW1}\:\mathrm{Sir}\:\mathrm{please} \\ $$$$\mathrm{answer}. \\ $$ Answered by mrW1 last updated on 12/Jun/17 $$\mathrm{W}\left(\mathrm{x}\right)\:\mathrm{has}\:\mathrm{no}\:\mathrm{real}\:\mathrm{value}\:\mathrm{for}\:\mathrm{x}<−\frac{\mathrm{1}}{\mathrm{e}} \\…

log-0-2-x-2-4-x-8-x-5-0-

Question Number 81039 by jagoll last updated on 09/Feb/20 $$\frac{\mathrm{log}_{\:\mathrm{0},\mathrm{2}} \left({x}−\mathrm{2}\right)}{\left(\mathrm{4}^{{x}} −\mathrm{8}\right)\left(\mid{x}\mid−\mathrm{5}\right)}\:\geqslant\:\mathrm{0} \\ $$ Commented by john santu last updated on 09/Feb/20 $$\Rightarrow\left({i}\right)\:{x}>\mathrm{2}\:\wedge{x}\neq\mathrm{5}\: \\ $$$$\left({ii}\right)\:\mathrm{4}^{{x}}…