Question Number 11417 by Joel576 last updated on 25/Mar/17 $${A}\:=\:\mathrm{log}\:\left(\mathrm{5}{x}\:+\:\mathrm{1}\right)\left(\mathrm{3}{x}\:+\:\mathrm{5}\right) \\ $$$${B}\:=\:\frac{\mathrm{1}}{\mathrm{log}\:\left(\mathrm{5}{x}+\:\mathrm{1}\right)\left({x}\:−\:\mathrm{1}\right)} \\ $$$$\mathrm{If}\:{A}\:+\:{B}\:\geqslant\:\mathrm{1},\:{x}\:\mathrm{must}\:\mathrm{be}\:… \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 11383 by tawa last updated on 22/Mar/17 $$\mathrm{There}\:\mathrm{are}\:\mathrm{six}\:\mathrm{trains}\:\mathrm{travelling}\:\mathrm{between}\:\mathrm{Abuja}\:\mathrm{and}\:\mathrm{Lagos}\:\mathrm{and}\:\mathrm{back}. \\ $$$$\mathrm{In}\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{a}\:\mathrm{man}\:\mathrm{travel}\:\mathrm{from}\:\mathrm{abuja}\:\mathrm{to}\:\mathrm{Lagos}\:\mathrm{by}\:\mathrm{one}\:\mathrm{train}\:\mathrm{and} \\ $$$$\mathrm{return}\:\mathrm{by}\:\mathrm{a}\:\mathrm{different}\:\mathrm{train} \\ $$ Answered by sandy_suhendra last updated on 23/Mar/17 $$\mathrm{Abuja}\:\mathrm{to}\:\mathrm{Lagos}\:=\:\mathrm{6}\:\mathrm{trains} \\…
Question Number 76034 by hmamarques1994@gmail.com last updated on 22/Dec/19 $$\: \\ $$$$\:\mathrm{53}^{\boldsymbol{\mathrm{log}}_{\boldsymbol{\mathrm{x}}} \left(\mathrm{7}\right)} \:=\:\sqrt{\boldsymbol{\mathrm{x}}} \\ $$$$\: \\ $$$$\:\boldsymbol{\mathrm{x}}\:=\:? \\ $$$$\: \\ $$ Answered by MJS…
Question Number 141365 by bemath last updated on 18/May/21 $$\:\mathrm{log}\:_{\frac{\mathrm{9}}{\mathrm{4}}} \left(\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}\sqrt{\mathrm{6}−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}\sqrt{\mathrm{6}−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}\sqrt{\mathrm{6}−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}\sqrt{…}}}}\right)\:=? \\ $$ Answered by EDWIN88 last updated on 18/May/21 $$\mathrm{let}\:\mathcal{E}\:=\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}\:\sqrt{\mathrm{6}−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}\:\sqrt{\mathrm{6}−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}\:\sqrt{\mathrm{6}−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}\sqrt{\ldots}}}} \\ $$$$\Rightarrow\:\mathcal{E}\:=\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}\:\sqrt{\mathrm{6}−\mathcal{E}}\: \\ $$$$\Rightarrow\:\mathcal{E}^{\mathrm{2}}…
Question Number 10186 by prakash jain last updated on 29/Jan/17 $$\mathrm{Prove} \\ $$$$\mathrm{ln}\:\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{{n}} =\left[\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}\left({n}+\mathrm{1}\right)}+\frac{\mathrm{1}}{\mathrm{2}\centerdot\mathrm{3}\left({n}+\mathrm{1}\right)^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{3}\centerdot\mathrm{4}\left({n}+\mathrm{1}\right)^{\mathrm{3}} }+..\right] \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 10064 by PradipGos. last updated on 22/Jan/17 $$\mathrm{if}\:\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} =\mathrm{3ab}\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that}\: \\ $$$$\mathrm{log}\frac{\mathrm{a}+\mathrm{b}}{\:\sqrt{\mathrm{5}}}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{log}{a}+\mathrm{log}{b}\right) \\ $$$$ \\ $$ Answered by ridwan balatif last updated on…
Question Number 140730 by liberty last updated on 12/May/21 $$\mathrm{If}\:\mathrm{equation}\:\mathrm{2log}\:\left(\mathrm{x}+\mathrm{3}\right)=\mathrm{log}\:\mathrm{ax} \\ $$$$\mathrm{has}\:\mathrm{only}\:\mathrm{one}\:\mathrm{solution}.\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{a}. \\ $$ Answered by mr W last updated on 12/May/21 $${a}\neq\mathrm{0}…
Question Number 140680 by bemath last updated on 11/May/21 $$\:\mathrm{log}\:_{\left(\mathrm{x}+\mathrm{2}\right)} \left(\mathrm{7x}^{\mathrm{2}} −\mathrm{x}^{\mathrm{3}} \right)−\mathrm{log}\:_{\frac{\mathrm{1}}{\mathrm{x}+\mathrm{2}}} \left(\mathrm{x}^{\mathrm{2}} −\mathrm{3x}\right)\geqslant\:\mathrm{log}\:_{\sqrt{\mathrm{x}+\mathrm{2}}\:} \left(\sqrt{\mathrm{5}−\mathrm{x}}\:\right) \\ $$ Answered by liberty last updated on 11/May/21…
Question Number 9516 by Joel575 last updated on 12/Dec/16 $$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\lfloor\mathrm{log}_{\mathrm{2}} \:{k}\rfloor\:=\:\mathrm{2018} \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{n}\:? \\ $$ Commented by sou1618 last updated on 12/Dec/16 $$\ast{K}=\lfloor{log}_{\mathrm{2}}…
Question Number 74945 by chess1 last updated on 04/Dec/19 Commented by chess1 last updated on 04/Dec/19 $$\mathrm{solve}\:\mathrm{equation} \\ $$ Answered by MJS last updated on…