Question Number 133936 by liberty last updated on 25/Feb/21 $$\mathrm{log}\:_{\mathrm{x}+\mathrm{8}} \left(\mathrm{x}^{\mathrm{2}} −\mathrm{3x}−\mathrm{4}\right)\:<\:\mathrm{2}.\mathrm{log}\:_{\left(\mathrm{4}−\mathrm{x}\right)^{\mathrm{2}} } \left(\mid\mathrm{x}−\mathrm{4}\mid\right)\: \\ $$ Answered by EDWIN88 last updated on 25/Feb/21 $$\:\mathrm{log}\:_{\mathrm{x}+\mathrm{8}} \left(\mathrm{x}^{\mathrm{2}}…
Question Number 133615 by benjo_mathlover last updated on 23/Feb/21 $$\mathrm{If}\:\mathrm{log}\:_{\mathrm{4}} \left(\mathrm{log}\:_{\mathrm{2}} \:\mathrm{x}\right)+\mathrm{log}\:_{\mathrm{2}} \left(\mathrm{log}\:_{\mathrm{4}} \:\mathrm{x}\right)=\mathrm{2} \\ $$$$\mathrm{then}\:\mathrm{log}\:_{\mathrm{5}} \:\sqrt{\mathrm{x}+\sqrt{\mathrm{x}}\:+\mathrm{5}}\:=\:? \\ $$ Answered by TheSupreme last updated on…
Question Number 1880 by alib last updated on 20/Oct/15 $${Solve} \\ $$$$ \\ $$$$\left.\mathrm{1}\right)\:\left({sin}\:\mathrm{2}{x}+\:\sqrt{}\mathrm{3}\:{cos}\:\mathrm{2}{x}\right)^{\mathrm{2}} =\mathrm{2}\:−\mathrm{2}\:{cos}\:\left(\frac{\mathrm{2}\pi}{\mathrm{3}}−{x}\right) \\ $$$$\left.\mathrm{2}\right)\:{cos}\:{x}\:−\:{cos}\:\mathrm{2}{x}\:=\:{sin}\:\mathrm{3}{x} \\ $$$$ \\ $$$$\left.\mathrm{3}\right)\:{sin}\:\left(\mathrm{15} °+{x}\right)\:+\:{cos}\:\left(\mathrm{45}°+{x}\right)+\:\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{0} \\ $$$$\left.\mathrm{4}\right)\:{tan}\:\left(\mathrm{70}°+{x}\right)\:+\:{tan}\:\left(\mathrm{20}°−{x}\right)\:=\:\mathrm{2} \\…
Question Number 67294 by Rio Michael last updated on 25/Aug/19 $${solve}\:{for}\:\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}\:{the}\:{simultaneous}\:{equation} \\ $$$$\:\mathrm{log}_{\mathrm{3}} {x}\:=\:{y}\:=\:\mathrm{log}\left(\mathrm{2}{x}\:−\:\mathrm{1}\right) \\ $$ Commented by mr W last updated on 25/Aug/19 $$\mathrm{log}_{{a}}…
Question Number 66413 by hmamarques1994@gmail.com last updated on 14/Aug/19 $$\: \\ $$$$\:\:\sqrt{\mathrm{8}+\boldsymbol{\mathrm{log}}_{\mathrm{6}} \left(\boldsymbol{\mathrm{x}}!\right)}+\sqrt{\mathrm{17}−\boldsymbol{\mathrm{log}}_{\boldsymbol{\mathrm{x}}!} \left(\mathrm{6}\right)}\:=\:\mathrm{7} \\ $$$$\: \\ $$ Answered by MJS last updated on 14/Aug/19…
Question Number 66396 by hmamarques1994@gmai.com last updated on 14/Aug/19 $$\: \\ $$$$\:\boldsymbol{\mathrm{Seja}}\:\:\mathrm{53}^{\boldsymbol{\mathrm{log}}_{\frac{\mathrm{1}}{\:\sqrt{\boldsymbol{{e}}^{\boldsymbol{\pi}} }}} \left[\sqrt[{\mathrm{9999999}}]{\left(\boldsymbol{{x}}+\mathrm{11}\right)!}\right]} \:=\:\mathrm{1}. \\ $$$$\: \\ $$$$\: \\ $$$$\: \\ $$$$\:\boldsymbol{\mathrm{Calcule}}\:\:\frac{\boldsymbol{\mathrm{x}}_{\mathrm{1}} }{\boldsymbol{\mathrm{x}}_{\mathrm{2}} }+\mathrm{0},\mathrm{9}.…
Question Number 66355 by gunawan last updated on 13/Aug/19 $${V}\mathrm{alue}\:\mathrm{of}\:{x}\:\mathrm{satiesfied}\:{y}=\frac{\mathrm{log}_{\mathrm{4}} \left({x}^{\mathrm{2}} −\mathrm{1}\right)}{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}} \\ $$$${negative}\:{value}\:\mathrm{is}… \\ $$$$\mathrm{a}.\:−\mathrm{1}<{x}<\sqrt{\mathrm{2}} \\ $$$${b}.\:−\sqrt{\mathrm{2}}<{x}<\mathrm{1} \\ $$$${c}.\:−\sqrt{\mathrm{2}}<{x}<\sqrt{\mathrm{2}} \\ $$$${d}.\:−\sqrt{\mathrm{2}}<{x}<−\mathrm{1} \\ $$$${e}.\:{x}<−\mathrm{2}…
Question Number 66354 by gunawan last updated on 13/Aug/19 $$\mathrm{If}\:\:\mathrm{2}{x}+{y}=\mathrm{8}\:\mathrm{and} \\ $$$$\left({x}+{y}\right)=\frac{\mathrm{3}}{\mathrm{2}}\mathrm{log}_{\mathrm{10}} \:\mathrm{2}.\mathrm{log}_{\mathrm{8}} \mathrm{36} \\ $$$$\mathrm{then}\:\mathrm{x}^{\mathrm{2}} +\mathrm{3y}=… \\ $$$$\mathrm{a}.\:\mathrm{28} \\ $$$$\mathrm{b}.\:\mathrm{22} \\ $$$$\mathrm{c}.\:\mathrm{20} \\ $$$$\mathrm{d}.\:\mathrm{16}…
Question Number 131890 by Study last updated on 09/Feb/21 $${log}_{\mathrm{2}} {x}+{log}_{\mathrm{3}} {x}=\mathrm{1}\:\:\:\:\:{x}=? \\ $$ Answered by Raxreedoroid last updated on 09/Feb/21 $$\frac{{log}_{\mathrm{3}} {x}}{{log}_{\mathrm{3}} \mathrm{2}}+{log}_{\mathrm{3}} {x}=\mathrm{1}…
Question Number 66279 by gunawan last updated on 12/Aug/19 $$\mathrm{Value}\:\mathrm{of}\:\mathrm{maximum} \\ $$$${f}\left({x}\right)=^{\mathrm{2}} \mathrm{log}\left({x}+\mathrm{5}\right)+^{\mathrm{2}} \mathrm{log}\left(\mathrm{3}−{x}\right) \\ $$$$\mathrm{is}… \\ $$$$\mathrm{a}.\mathrm{4} \\ $$$$\mathrm{b}.\mathrm{8} \\ $$$$\mathrm{c}.\:\mathrm{12} \\ $$$$\mathrm{d}.\:\mathrm{15} \\…