Menu Close

Category: Logic

White-horse-horse-and-horse-White-horse-Q-Are-the-above-propositions-equivalent-

Question Number 212927 by MrGaster last updated on 27/Oct/24 $$\mathrm{White}\:\mathrm{horse}\neq\mathrm{horse}\:\mathrm{and}\:\mathrm{horse}\neq\mathrm{White}\:\mathrm{horse} \\ $$$${Q}:\mathrm{Are}\:\mathrm{the}\:\mathrm{above}\:\mathrm{propositions}\:\mathrm{equivalent}? \\ $$ Answered by Faetmaaa last updated on 27/Oct/24 $$\mathrm{Yes}\:\mathrm{because}\:\neq\:\mathrm{is}\:\mathrm{a}\:\mathrm{symetric}\:\mathrm{relation}. \\ $$ Terms…

Question-208681

Question Number 208681 by Noorzai last updated on 20/Jun/24 Answered by Rasheed.Sindhi last updated on 21/Jun/24 $$\sqrt{\mathrm{7}+\sqrt{\mathrm{48}}}\:=\sqrt{\mathrm{7}+\mathrm{4}\sqrt{\mathrm{3}}}\:={a}+{b}\sqrt{\mathrm{3}}\:\left(>\mathrm{0}\right)\left({let}\right) \\ $$$$\:{Where}\:{a},{b}\in\mathbb{Z} \\ $$$$\mathrm{7}+\mathrm{4}\sqrt{\mathrm{3}}\:={a}^{\mathrm{2}} +\mathrm{3}{b}^{\mathrm{2}} +\mathrm{2}{ab}\sqrt{\mathrm{3}}\: \\ $$$${a}^{\mathrm{2}}…

Question-208421

Question Number 208421 by lepuissantcedricjunior last updated on 15/Jun/24 Commented by Frix last updated on 15/Jun/24 $$\Psi=\mathrm{2}\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{4}}} {\int}}\frac{{dx}}{\:\sqrt{\mathrm{tan}\:\mathrm{2}{x}}}\:\overset{{t}=\sqrt{\mathrm{tan}\:\mathrm{2}{x}}} {=}\:\mathrm{2}\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{dt}}{{t}^{\mathrm{4}} +\mathrm{1}}=\frac{\sqrt{\mathrm{2}}\pi}{\mathrm{2}} \\ $$…

resoudre-dans-R-3-x-y-3-y-z-5-x-z-4-

Question Number 208420 by lepuissantcedricjunior last updated on 15/Jun/24 $$\boldsymbol{{resoudre}}\:\boldsymbol{{dans}}\:\mathbb{R}^{\mathrm{3}} \\ $$$$\begin{cases}{\boldsymbol{{x}}+\boldsymbol{{y}}=\mathrm{3}}\\{\boldsymbol{{y}}+\boldsymbol{{z}}=\mathrm{5}}\end{cases}\boldsymbol{{x}}+\boldsymbol{{z}}=\mathrm{4} \\ $$ Commented by A5T last updated on 15/Jun/24 $${You}\:{should}\:{learn}\:{to}\:{signify}\:{that}\:{you}\:{changed} \\ $$$${a}\:{question}. \\…

Question-207834

Question Number 207834 by efronzo1 last updated on 28/May/24 $$\:\:\:\:\underbrace{\:} \\ $$$$ \\ $$ Answered by Berbere last updated on 28/May/24 $${a}^{\mathrm{505}} ={x};{y}={b}^{\mathrm{505}} \\ $$$$\Leftrightarrow\begin{cases}{{x}+{y}.}\\{{max}\left\{{x}^{\mathrm{4}}…