Question Number 92687 by Ar Brandon last updated on 08/May/20 $$\mathrm{In}\:\mathrm{a}\:\mathrm{Gregorian}\:\mathrm{calendar},\:\mathrm{a}\:\mathrm{year}\:\mathrm{finishing}\:\mathrm{with} \\ $$$$\mathrm{00}\:\mathrm{is}\:\mathrm{a}\:\mathrm{leap}\:\mathrm{year}\:\mathrm{if}\:\mathrm{only}\:\mathrm{it}'\mathrm{s}\:\mathrm{vintage}\:\mathrm{is}\:\mathrm{divisible} \\ $$$$\mathrm{by}\:\mathrm{400}.\:\mathrm{Also},\:\mathrm{the}\:\mathrm{1}^{\mathrm{st}} \:\mathrm{January}\:\mathrm{1900}\:\mathrm{was}\:\mathrm{a} \\ $$$$\mathrm{Monday}. \\ $$$$\mathrm{1}\backslash\:\mathrm{Show}\:\mathrm{that}\:\mathrm{a}\:\mathrm{year}\:\mathrm{with}\:\mathrm{the}\:\mathrm{vintage}\:\mathrm{finishing}\:\mathrm{with} \\ $$$$\mathrm{00}\:\mathrm{cannot}\:\mathrm{begin}\:\mathrm{on}\:\mathrm{a}\:\mathrm{Sunday} \\ $$$$\mathrm{2}\backslash\:\mathrm{Show}\:\mathrm{that}\:\mathrm{for}\:\mathrm{a}\:\mathrm{person}\:\mathrm{born}\:\mathrm{between}\:\mathrm{1900}−\mathrm{2071}, \\…
Question Number 92673 by Ar Brandon last updated on 08/May/20 $$\mathrm{Show}\:\mathrm{that}\:\mathrm{if}\:\mathrm{3}\:\mathrm{prime}\:\mathrm{numbers},\:\mathrm{all}\:\mathrm{greater} \\ $$$$\mathrm{than}\:\mathrm{3},\:\mathrm{form}\:\mathrm{an}\:\mathrm{arithmetic}\:\mathrm{progression}\:\mathrm{then}\:\mathrm{the}\:\mathrm{common} \\ $$$$\mathrm{difference}\:\mathrm{of}\:\mathrm{the}\:\mathrm{progression}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{6}. \\ $$ Commented by Rasheed.Sindhi last updated on 09/May/20 $${In}\:{other}\:{words}:…
Question Number 157887 by Tawa11 last updated on 29/Oct/21 Commented by Tawa11 last updated on 29/Oct/21 $$\mathrm{Proof}\:\mathrm{please} \\ $$ Commented by Rasheed.Sindhi last updated on…
Question Number 26721 by shiv15031973@gmail.com last updated on 02/Jan/18 $$−\mathrm{2}{y}\left({y}−\mathrm{12}\right)\left({y}−\mathrm{1}\right){or}\left({y}−\mathrm{12}\right)\left(−\mathrm{2}{y}^{\mathrm{2}} −\mathrm{2}{y}\right)\:\:{both}\:{are}\:{same}. \\ $$ Commented by Rasheed.Sindhi last updated on 28/Dec/17 $$\mathrm{Do}\:\mathrm{you}\:\mathrm{mean}\:\frac{−\mathrm{2}{y}\left({y}−\mathrm{12}\right)\left({y}−\mathrm{1}\right)}{\left({y}−\mathrm{12}\right)\left(−\mathrm{2}{y}^{\mathrm{2}} −\mathrm{2}{y}\right)}\:? \\ $$$$\mathrm{If}\:\mathrm{you}\:\mathrm{mean}\:\mathrm{so} \\…
Question Number 90801 by john santu last updated on 26/Apr/20 $${what}\:{are}\:{the}\:{next}\:{two}\:{number}\: \\ $$$${of}\:{this}\:{series}\:\mathrm{4},\mathrm{7},\mathrm{9},\mathrm{2},\mathrm{5},\mathrm{6},\mathrm{3},\mathrm{8}\:? \\ $$ Commented by MJS last updated on 26/Apr/20 $${a}_{{n}} =−\frac{\mathrm{17}}{\mathrm{630}}{n}^{\mathrm{7}} +\frac{\mathrm{643}}{\mathrm{720}}{n}^{\mathrm{6}}…
Question Number 155988 by 1367521jafar last updated on 07/Oct/21 $$\mathrm{2}^{\overset{} {\mathrm{2}}} \\ $$ Answered by puissant last updated on 07/Oct/21 $$\mathrm{2}^{\mathrm{2}} =\mathrm{4} \\ $$ Answered…
Question Number 90233 by jagoll last updated on 22/Apr/20 $$\mathrm{3},\mathrm{4},\mathrm{12},\mathrm{39},\mathrm{103},\mathrm{x}\: \\ $$$$\left(\mathrm{a}\right)\:\mathrm{164} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{170} \\ $$$$\left(\mathrm{c}\right)\:\mathrm{172} \\ $$$$\left(\mathrm{d}\right)\:\mathrm{228} \\ $$ Commented by john santu last…
Question Number 90200 by Ar Brandon last updated on 21/Apr/20 $$\mathrm{26}\equiv\mathrm{R}_{\mathrm{1}} \left[\mathrm{37}\right] \\ $$$$\mathrm{1}\:\:\equiv\mathrm{R}_{\mathrm{2}} \left[\mathrm{3}\right] \\ $$$$\mathrm{2}\equiv\mathrm{R}_{\mathrm{3}} \left[\mathrm{5}\right] \\ $$$$\mathrm{Find}\:\mathrm{R}_{\mathrm{1}} ,\:\mathrm{R}_{\mathrm{2}} \mathrm{and}\:\mathrm{R}_{\mathrm{3}} \\ $$ Commented…
Question Number 24211 by Physics lover last updated on 14/Nov/17 Commented by Physics lover last updated on 14/Nov/17 $${The}\:{figure}\:{shows}\:{a}\:{mercury} \\ $$$${barometer}. \\ $$$${find}\:{reading}\:{of}\:{the}\:{weighing}\: \\ $$$${machine}.\:{Density}\:{of}\:{mercury}…
Question Number 23508 by math solver last updated on 31/Oct/17 Commented by math solver last updated on 01/Nov/17 $$\mathrm{q}.\mathrm{1}\:\:? \\ $$ Answered by mrW1 last…