Question Number 100664 by bobhans last updated on 28/Jun/20 $$\mathrm{A}\:\mathrm{matrix}\:\mathrm{2×2}\:\&\:\mathrm{B}\:=\:\begin{pmatrix}{−\mathrm{2}\:\:\:\:\mathrm{3}}\\{\:\:\mathrm{2}\:\:\:\:\:\:\mathrm{4}}\end{pmatrix}\:\:\mathrm{such}\:\mathrm{that}\: \\ $$$$\mathrm{A}^{\mathrm{T}} \mathrm{B}+\mathrm{3A}^{\mathrm{T}} \:=\:\begin{pmatrix}{\:\:\:\mathrm{5}\:\:\:\:\mathrm{4}}\\{−\mathrm{1}\:\:\:\mathrm{1}}\end{pmatrix}\:\:\mathrm{so}\:\mathrm{find}\:\mathrm{det}\left(\mathrm{4A}^{−\mathrm{1}} \right) \\ $$ Answered by bramlex last updated on 28/Jun/20 $${A}^{{T}}…
Question Number 100650 by bobhans last updated on 28/Jun/20 $$\mathrm{find}\:\mathrm{all}\:\mathrm{2×2}\:\mathrm{matrices}\:\mathrm{A}\:\mathrm{such} \\ $$$$\mathrm{that}\:\mathrm{A}^{\mathrm{3}} −\mathrm{3A}^{\mathrm{2}} \:=\:\begin{pmatrix}{−\mathrm{2}\:\:\:\:\:−\mathrm{2}}\\{−\mathrm{2}\:\:\:\:\:\:−\mathrm{2}}\end{pmatrix} \\ $$ Answered by bramlex last updated on 28/Jun/20 $${let}\:{A}\:=\:\begin{pmatrix}{{a}\:\:\:\:\:{b}}\\{{c}\:\:\:\:\:{d}}\end{pmatrix} \\…
Question Number 100296 by bobhans last updated on 26/Jun/20 $$\mathcal{G}\mathrm{iven}\:\mathrm{matrix}\:\mathrm{A}\:=\:\begin{bmatrix}{\mathrm{3}\:\:\:\:\:\mathrm{1}\:\:\:\:\:\mathrm{4}}\\{\mathrm{1}\:\:\:\:\:\mathrm{2}\:\:\:\:\:\:\mathrm{5}}\\{\mathrm{0}\:\:\:\:\:\mathrm{2}\:\:\:\:\:\mathrm{6}}\end{bmatrix} \\ $$$$\mathrm{find}:\:\:\mathrm{adj}\left(\mathrm{adj}\:\mathrm{A}\right)\:? \\ $$ Answered by bemath last updated on 26/Jun/20 $$\mathrm{adj}\left(\mathrm{adj}\:\mathrm{A}\right)\:=\:\mid\mathrm{A}\mid^{\mathrm{n}−\mathrm{1}} \:.\mathrm{A} \\ $$$$\mathrm{A}_{\mathrm{3}×\mathrm{3}}…
Question Number 165650 by cortano1 last updated on 06/Feb/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 100068 by M±th+et+s last updated on 24/Jun/20 $${hello}\:{all}\:{i}\:{have}\:{some}\:{questions}? \\ $$$$ \\ $$$$\left.\mathrm{1}\right){what}\:{is}\:{the}\:{riemann}\:{hypothesis}? \\ $$$$ \\ $$$$\left.\mathrm{2}\right){how}\:{did}\:{they}\:{determine}\:{the}\:{distance} \\ $$$${to}\:{the}\:{sun}? \\ $$$$ \\ $$$$\left.\mathrm{3}\right){how}\:{did}\:{we}\:{measure}\:{the}\:{speed}\:{of}\:{light}? \\…
Question Number 99986 by Rio Michael last updated on 24/Jun/20 $$\mathrm{Explain}\:\mathrm{Einstein}'\mathrm{s}\:\mathrm{theory}\:\mathrm{of}\:\mathrm{Gravitation}\: \\ $$$$\mathrm{and}\:\mathrm{explain}\:\mathrm{why}\:\mathrm{photons}\:\mathrm{don}'\mathrm{t}\:\mathrm{fit}\:\mathrm{Newton}'\mathrm{s} \\ $$$$\mathrm{model}\:\mathrm{but}\:\mathrm{Einstein}'\mathrm{s}. \\ $$ Answered by mathmax by abdo last updated on…
Question Number 34355 by srikarkailash9@gmail.com last updated on 05/May/18 Commented by math khazana by abdo last updated on 05/May/18 $${let}\:{prove}\:{by}\:{recurrence}\:{that}\: \\ $$$${A}^{{n}} \:=\:\begin{pmatrix}{{p}^{{n}} \:\:\:\:\:\:\:\:{q}\frac{{p}^{{n}} −\mathrm{1}}{{p}−\mathrm{1}}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix}…
Question Number 98661 by bemath last updated on 15/Jun/20 $$\mathrm{using}\:\mathrm{cayley}\:−\:\mathrm{hamilton} \\ $$$$\mathrm{theorem}\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{inverse}\:\mathrm{of} \\ $$$$\mathrm{matrix}\:\mathrm{A}=\:\begin{bmatrix}{\mathrm{0}\:\:\:\:\mathrm{1}\:\:\:−\mathrm{1}}\\{\mathrm{1}\:\:\:\:\mathrm{2}\:\:\:\:\:\:\mathrm{2}}\\{\mathrm{0}\:\:\:\:\mathrm{1}\:\:\:−\mathrm{1}}\end{bmatrix}\: \\ $$ Commented by john santu last updated on 15/Jun/20 $$\mathrm{we}\:\mathrm{first}\:\mathrm{compute}\:\mathrm{the}\:\mathrm{characteristic}…
Question Number 164133 by Avijit007 last updated on 14/Jan/22 Answered by cortano1 last updated on 15/Jan/22 $$\:{A}=\begin{bmatrix}{{a}\:\:\:\:{b}}\\{{c}\:\:\:\:{d}}\end{bmatrix};\:{B}=\begin{bmatrix}{{e}\:\:\:\:{f}}\\{{g}\:\:\:\:{h}}\end{bmatrix} \\ $$$$\:\begin{bmatrix}{\mathrm{2}{a}+\mathrm{3}{e}\:\:\:\:\mathrm{2}{b}+\mathrm{3}{f}}\\{\mathrm{2}{c}+\mathrm{3}{g}\:\:\:\:\:\mathrm{2}{d}+\mathrm{3}{h}}\end{bmatrix}=\:\begin{bmatrix}{\mathrm{8}\:\:\:\:\:\mathrm{3}}\\{\mathrm{7}\:\:\:\:\:\mathrm{6}}\end{bmatrix} \\ $$$$\:\begin{bmatrix}{{a}+{e}\:\:\:\:{b}+{g}}\\{{c}+{f}\:\:\:\:{d}+{h}}\end{bmatrix}=\:\begin{bmatrix}{\mathrm{3}\:\:\:\:\:\:\mathrm{1}}\\{\mathrm{3}\:\:\:\:\:\:\mathrm{3}}\end{bmatrix} \\ $$$$\:\mathrm{2}{a}+\mathrm{3}{e}=\mathrm{8}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}{d}+\mathrm{3}{h}=\mathrm{6} \\ $$$$\:\mathrm{2}{a}+\mathrm{2}{e}=\mathrm{6}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}{d}+\mathrm{2}{h}=\mathrm{6}…
Question Number 164134 by Avijit007 last updated on 14/Jan/22 Answered by Rasheed.Sindhi last updated on 14/Jan/22 $${A}=\begin{bmatrix}{{a}_{\mathrm{11}} }&{{a}_{\mathrm{12}} }\\{{a}_{\mathrm{21}} }&{{a}_{\mathrm{22}} }\end{bmatrix},{B}=\begin{bmatrix}{{b}_{\mathrm{11}} }&{{b}_{\mathrm{12}} }\\{{b}_{\mathrm{21}} }&{{b}_{\mathrm{22}} }\end{bmatrix}\left({say}\right)…