Menu Close

Category: Matrices and Determinants

find-the-determinant-of-the-matrix-below-determinant-0-4-0-0-0-0-0-0-2-0-0-0-3-0-0-0-0-0-0-1-5-0-0-0-0-

Question Number 9287 by suci last updated on 28/Nov/16 $${find}\:{the}\:{determinant}\:{of}\:{the}\:{matrix}\:{below} \\ $$$$\begin{vmatrix}{\mathrm{0}}&{\mathrm{4}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{2}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{3}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}\\{\mathrm{5}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}\end{vmatrix} \\ $$ Answered by mrW last updated on 28/Nov/16 $$=−\mathrm{4}×\begin{vmatrix}{\mathrm{0}}&{\mathrm{0}}&{\mathrm{2}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{3}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}\\{\mathrm{5}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}\end{vmatrix} \\ $$$$=−\mathrm{4}×\mathrm{2}×\begin{vmatrix}{\mathrm{0}}&{\mathrm{3}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}\\{\mathrm{5}}&{\mathrm{0}}&{\mathrm{0}}\end{vmatrix} \\…

Find-the-determinant-of-the-matrix-below-determinant-3-1-5-3-4-3-8-5-6-2-1-7-8-5-8-1-

Question Number 9271 by tawakalitu last updated on 27/Nov/16 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{determinant}\:\mathrm{of}\:\mathrm{the}\:\mathrm{matrix}\:\mathrm{below}. \\ $$$$\begin{vmatrix}{\mathrm{3}\:\:\mathrm{1}\:\:\mathrm{5}\:\:\mathrm{3}}\\{\mathrm{4}\:\:\mathrm{3}\:\:\mathrm{8}\:\:\mathrm{5}}\\{\mathrm{6}\:\:\mathrm{2}\:\:\mathrm{1}\:\:\mathrm{7}}\\{\mathrm{8}\:\:\mathrm{5}\:\:\mathrm{8}\:\:\mathrm{1}}\end{vmatrix} \\ $$ Answered by mrW last updated on 27/Nov/16 $$\mathrm{C4}−\mathrm{C1}: \\ $$$$\begin{vmatrix}{\mathrm{3}}&{\mathrm{1}}&{\mathrm{5}}&{\mathrm{0}}\\{\mathrm{4}}&{\mathrm{3}}&{\mathrm{8}}&{\mathrm{1}}\\{\mathrm{6}}&{\mathrm{2}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{8}}&{\mathrm{5}}&{\mathrm{8}}&{−\mathrm{7}}\end{vmatrix} \\…

Question-7196

Question Number 7196 by Tawakalitu. last updated on 15/Aug/16 Answered by Rasheed Soomro last updated on 18/Aug/16 $$\begin{bmatrix}{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}&{\mathrm{4}}&{\mathrm{5}}&{\mathrm{6}}&{\mathrm{7}}&{\mathrm{8}}&{\mathrm{9}}&{\mathrm{10}}\\{\mathrm{10}}&{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}&{\mathrm{4}}&{\mathrm{5}}&{\mathrm{6}}&{\mathrm{7}}&{\mathrm{8}}&{\mathrm{9}}\\{\mathrm{9}}&{\mathrm{10}}&{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}&{\mathrm{4}}&{\mathrm{5}}&{\mathrm{6}}&{\mathrm{7}}&{\mathrm{8}}\\{\mathrm{8}}&{\mathrm{9}}&{\mathrm{10}}&{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}&{\mathrm{4}}&{\mathrm{5}}&{\mathrm{6}}&{\mathrm{7}}\\{\mathrm{7}}&{\mathrm{8}}&{\mathrm{9}}&{\mathrm{10}}&{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}&{\mathrm{4}}&{\mathrm{5}}&{\mathrm{6}}\\{\mathrm{6}}&{\mathrm{7}}&{\mathrm{8}}&{\mathrm{9}}&{\mathrm{10}}&{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}&{\mathrm{4}}&{\mathrm{5}}\\{\mathrm{5}}&{\mathrm{6}}&{\mathrm{7}}&{\mathrm{8}}&{\mathrm{9}}&{\mathrm{10}}&{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}&{\mathrm{4}}\\{\mathrm{4}}&{\mathrm{5}}&{\mathrm{6}}&{\mathrm{7}}&{\mathrm{8}}&{\mathrm{9}}&{\mathrm{10}}&{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}\\{\mathrm{3}}&{\mathrm{4}}&{\mathrm{5}}&{\mathrm{6}}&{\mathrm{7}}&{\mathrm{8}}&{\mathrm{9}}&{\mathrm{10}}&{\mathrm{1}}&{\mathrm{2}}\\{\mathrm{2}}&{\mathrm{3}}&{\mathrm{4}}&{\mathrm{5}}&{\mathrm{6}}&{\mathrm{7}}&{\mathrm{8}}&{\mathrm{9}}&{\mathrm{10}}&{\mathrm{1}}\end{bmatrix}\:\:\:\: \\ $$$${Subtracting}\:{each}\:{row}\left({start}\:{from}\:\mathrm{2}{nd}\:{row}\right)\:\:{from}\:{previous}\:{row} \\ $$$$\begin{bmatrix}{-\mathrm{9}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{1}}&{-\mathrm{9}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{1}}&{-\mathrm{9}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{-\mathrm{9}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{-\mathrm{9}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{-\mathrm{9}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{-\mathrm{9}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{-\mathrm{9}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{-\mathrm{9}}&{\mathrm{1}}\\{\mathrm{2}}&{\mathrm{3}}&{\mathrm{4}}&{\mathrm{5}}&{\mathrm{6}}&{\mathrm{7}}&{\mathrm{8}}&{\mathrm{9}}&{\mathrm{10}}&{\mathrm{1}}\end{bmatrix}\:\:\:\:\:\:\:\: \\ $$$${Again}\:{subtracting}\:{each}\:{row}\:{from}\:{previous}\:{row} \\…