Question Number 9287 by suci last updated on 28/Nov/16 $${find}\:{the}\:{determinant}\:{of}\:{the}\:{matrix}\:{below} \\ $$$$\begin{vmatrix}{\mathrm{0}}&{\mathrm{4}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{2}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{3}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}\\{\mathrm{5}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}\end{vmatrix} \\ $$ Answered by mrW last updated on 28/Nov/16 $$=−\mathrm{4}×\begin{vmatrix}{\mathrm{0}}&{\mathrm{0}}&{\mathrm{2}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{3}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}\\{\mathrm{5}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}\end{vmatrix} \\ $$$$=−\mathrm{4}×\mathrm{2}×\begin{vmatrix}{\mathrm{0}}&{\mathrm{3}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}\\{\mathrm{5}}&{\mathrm{0}}&{\mathrm{0}}\end{vmatrix} \\…
Question Number 9271 by tawakalitu last updated on 27/Nov/16 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{determinant}\:\mathrm{of}\:\mathrm{the}\:\mathrm{matrix}\:\mathrm{below}. \\ $$$$\begin{vmatrix}{\mathrm{3}\:\:\mathrm{1}\:\:\mathrm{5}\:\:\mathrm{3}}\\{\mathrm{4}\:\:\mathrm{3}\:\:\mathrm{8}\:\:\mathrm{5}}\\{\mathrm{6}\:\:\mathrm{2}\:\:\mathrm{1}\:\:\mathrm{7}}\\{\mathrm{8}\:\:\mathrm{5}\:\:\mathrm{8}\:\:\mathrm{1}}\end{vmatrix} \\ $$ Answered by mrW last updated on 27/Nov/16 $$\mathrm{C4}−\mathrm{C1}: \\ $$$$\begin{vmatrix}{\mathrm{3}}&{\mathrm{1}}&{\mathrm{5}}&{\mathrm{0}}\\{\mathrm{4}}&{\mathrm{3}}&{\mathrm{8}}&{\mathrm{1}}\\{\mathrm{6}}&{\mathrm{2}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{8}}&{\mathrm{5}}&{\mathrm{8}}&{−\mathrm{7}}\end{vmatrix} \\…
Question Number 74369 by Rio Michael last updated on 23/Nov/19 $${please}\:{state}\:{Cramer}'{s}\:{rule} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 74323 by arthur.kangdani@gmail.com last updated on 22/Nov/19 Commented by arthur.kangdani@gmail.com last updated on 22/Nov/19 $$\mathrm{Determine}\:\mathrm{the}\:\mathrm{inverse}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{matrix}\:\mathrm{of}\:{AB}+{C}! \\ $$ Commented by mathmax by…
Question Number 8650 by tawakalitu last updated on 19/Oct/16 Commented by tawakalitu last updated on 19/Oct/16 $$\mathrm{please}\:\mathrm{reduce}\:\mathrm{to}\:\mathrm{echelon}\:\mathrm{form}. \\ $$ Commented by ridwan balatif last updated…
Question Number 8647 by tawakalitu last updated on 19/Oct/16 Commented by tawakalitu last updated on 19/Oct/16 $$\mathrm{please}\:\mathrm{reduce}\:\mathrm{the}\:\mathrm{following}\:\mathrm{into}\:\mathrm{echelon} \\ $$$$\mathrm{form}.\:\mathrm{the}\:\mathrm{above}\:\mathrm{equation}. \\ $$ Terms of Service Privacy…
Question Number 8082 by tawakalitu last updated on 29/Sep/16 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 8080 by tawakalitu last updated on 29/Sep/16 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 139104 by I want to learn more last updated on 22/Apr/21 $$\mathrm{Make}\:\:\mathrm{r}\:\:\mathrm{subject}\:\mathrm{formula}:\:\:\:\:\:\mathrm{S}_{\mathrm{n}} \:\:=\:\:\:\frac{\mathrm{a}\left(\mathrm{1}\:\:\:−\:\:\:\mathrm{r}^{\mathrm{n}} \right)}{\mathrm{1}\:\:−\:\:\:\mathrm{r}} \\ $$ Commented by mr W last updated on…
Question Number 7196 by Tawakalitu. last updated on 15/Aug/16 Answered by Rasheed Soomro last updated on 18/Aug/16 $$\begin{bmatrix}{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}&{\mathrm{4}}&{\mathrm{5}}&{\mathrm{6}}&{\mathrm{7}}&{\mathrm{8}}&{\mathrm{9}}&{\mathrm{10}}\\{\mathrm{10}}&{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}&{\mathrm{4}}&{\mathrm{5}}&{\mathrm{6}}&{\mathrm{7}}&{\mathrm{8}}&{\mathrm{9}}\\{\mathrm{9}}&{\mathrm{10}}&{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}&{\mathrm{4}}&{\mathrm{5}}&{\mathrm{6}}&{\mathrm{7}}&{\mathrm{8}}\\{\mathrm{8}}&{\mathrm{9}}&{\mathrm{10}}&{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}&{\mathrm{4}}&{\mathrm{5}}&{\mathrm{6}}&{\mathrm{7}}\\{\mathrm{7}}&{\mathrm{8}}&{\mathrm{9}}&{\mathrm{10}}&{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}&{\mathrm{4}}&{\mathrm{5}}&{\mathrm{6}}\\{\mathrm{6}}&{\mathrm{7}}&{\mathrm{8}}&{\mathrm{9}}&{\mathrm{10}}&{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}&{\mathrm{4}}&{\mathrm{5}}\\{\mathrm{5}}&{\mathrm{6}}&{\mathrm{7}}&{\mathrm{8}}&{\mathrm{9}}&{\mathrm{10}}&{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}&{\mathrm{4}}\\{\mathrm{4}}&{\mathrm{5}}&{\mathrm{6}}&{\mathrm{7}}&{\mathrm{8}}&{\mathrm{9}}&{\mathrm{10}}&{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}\\{\mathrm{3}}&{\mathrm{4}}&{\mathrm{5}}&{\mathrm{6}}&{\mathrm{7}}&{\mathrm{8}}&{\mathrm{9}}&{\mathrm{10}}&{\mathrm{1}}&{\mathrm{2}}\\{\mathrm{2}}&{\mathrm{3}}&{\mathrm{4}}&{\mathrm{5}}&{\mathrm{6}}&{\mathrm{7}}&{\mathrm{8}}&{\mathrm{9}}&{\mathrm{10}}&{\mathrm{1}}\end{bmatrix}\:\:\:\: \\ $$$${Subtracting}\:{each}\:{row}\left({start}\:{from}\:\mathrm{2}{nd}\:{row}\right)\:\:{from}\:{previous}\:{row} \\ $$$$\begin{bmatrix}{-\mathrm{9}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{1}}&{-\mathrm{9}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{1}}&{-\mathrm{9}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{-\mathrm{9}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{-\mathrm{9}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{-\mathrm{9}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{-\mathrm{9}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{-\mathrm{9}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{-\mathrm{9}}&{\mathrm{1}}\\{\mathrm{2}}&{\mathrm{3}}&{\mathrm{4}}&{\mathrm{5}}&{\mathrm{6}}&{\mathrm{7}}&{\mathrm{8}}&{\mathrm{9}}&{\mathrm{10}}&{\mathrm{1}}\end{bmatrix}\:\:\:\:\:\:\:\: \\ $$$${Again}\:{subtracting}\:{each}\:{row}\:{from}\:{previous}\:{row} \\…