Question Number 121523 by benjo_mathlover last updated on 09/Nov/20 $$\mathrm{Given}\:\mathrm{A}\:\mathrm{a}\:\mathrm{3×3}\:\mathrm{matrix}\:\mathrm{satisfy}\: \\ $$$$\rightarrow\begin{cases}{\mathrm{A}\begin{pmatrix}{\mathrm{1}}\\{\mathrm{2}}\\{\mathrm{3}}\end{pmatrix}\:=\:\begin{pmatrix}{\mathrm{3}}\\{\mathrm{4}}\\{\mathrm{2}}\end{pmatrix}}\\{\mathrm{A}\begin{pmatrix}{\mathrm{5}}\\{\mathrm{9}}\\{\mathrm{7}}\end{pmatrix}\:=\:\begin{pmatrix}{\mathrm{3}}\\{\mathrm{1}}\\{\mathrm{2}}\end{pmatrix}}\end{cases} \\ $$$$.\:\mathrm{Find}\:\mathrm{A}\begin{pmatrix}{\mathrm{10}}\\{\mathrm{18}}\\{\mathrm{14}}\end{pmatrix}\:?\: \\ $$ Commented by liberty last updated on 09/Nov/20 $$\Leftrightarrow\:\mathrm{A}\begin{pmatrix}{\mathrm{10}}\\{\mathrm{18}}\\{\mathrm{14}}\end{pmatrix}\:=\:\mathrm{2A}\begin{pmatrix}{\mathrm{5}}\\{\mathrm{9}}\\{\mathrm{7}}\end{pmatrix}\:=\:\mathrm{2}\begin{pmatrix}{\mathrm{3}}\\{\mathrm{1}}\\{\mathrm{2}}\end{pmatrix}\:=\:\begin{pmatrix}{\mathrm{6}}\\{\mathrm{2}}\\{\mathrm{4}}\end{pmatrix} \\…
Question Number 121372 by Ar Brandon last updated on 07/Nov/20 Commented by Ar Brandon last updated on 07/Nov/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 55733 by Tinkutara last updated on 03/Mar/19 Commented by Tinkutara last updated on 03/Mar/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 55663 by peter frank last updated on 01/Mar/19 Answered by tanmay.chaudhury50@gmail.com last updated on 01/Mar/19 $${b}_{\mathrm{1}} \:{b}_{\mathrm{2}\:} \:{b}_{\mathrm{3}} \:{b}_{\mathrm{4}} \:{b}_{\mathrm{5}} \:{b}_{\mathrm{6}} \:{b}_{\mathrm{7}} \:{b}_{\bigstar}…
Question Number 55422 by Tinkutara last updated on 23/Feb/19 $${Please}\:{see}\:{these}\:{questions}: \\ $$ Commented by Tinkutara last updated on 23/Feb/19 https://goiit.com/uploads/default/original/3X/0/8/0852a69d881889ef7f6f41a47072adf1af91cda4.JPG Terms of Service Privacy Policy…
Question Number 55374 by gunawan last updated on 23/Feb/19 $$\mathrm{Given}\:\mathrm{matrices}\:{A}\left({x}\right)=\begin{bmatrix}{{x}−\mathrm{1}}&{\mathrm{3}}\\{\mathrm{4}}&{{x}+\mathrm{3}}\end{bmatrix}\in\:{M}_{\mathrm{2}} \left(\mathbb{R}\right). \\ $$$$\mathrm{The}\:\mathrm{smallest}\:\mathrm{det}\left({A}\left({x}\right)\right)\:\mathrm{is}.. \\ $$ Answered by Joel578 last updated on 23/Feb/19 $$\mid{A}\left({x}\right)\mid\:=\:\left({x}\:−\:\mathrm{1}\right)\left({x}\:+\:\mathrm{3}\right)\:−\:\mathrm{12} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:{x}^{\mathrm{2}}…
Question Number 54969 by gunawan last updated on 15/Feb/19 $$\mathrm{Let}\:\lambda\:\mathrm{is}\:\mathrm{value}\:\mathrm{of}\:\mathrm{characteristic} \\ $$$$\mathrm{matrices}\:{P}\:\:\mathrm{the}\:\mathrm{fill}\:{P}^{{t}} ={P}^{\mathrm{2}} \\ $$$$\mathrm{find}\:\mathrm{all}\:\lambda\:\mathrm{the}\:\mathrm{posible} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 54968 by gunawan last updated on 15/Feb/19 $$\mathrm{Let}\:{A}\:\mathrm{matrices}\:\mathrm{order}\:\mathrm{2}×\mathrm{2}\:\mathrm{the}\:\mathrm{fill} \\ $$$$\mathrm{tr}\left({A}^{\mathrm{2}} \right)=\left[{tr}\left({A}\right)\right]^{\mathrm{2}} \\ $$$$\mathrm{a}.\:\mathrm{Find}\:\mathrm{det}\left(\mathrm{A}\right) \\ $$$$\mathrm{b}.\:\mathrm{If}\:\mathrm{A}\:\mathrm{can}'\mathrm{t}\:\mathrm{diagonalizing},\:\mathrm{find}\:\mathrm{tr}\left({A}\right) \\ $$$$ \\ $$ Answered by kaivan.ahmadi last…
Question Number 54967 by gunawan last updated on 15/Feb/19 $$\mathrm{Let}\:{x}_{\mathrm{1}} ,\:{x}_{\mathrm{2}} ,\:{x}_{\mathrm{3}} \:\mathrm{the}\:\mathrm{number}\:\mathrm{real} \\ $$$${x}_{\mathrm{1}} <{x}_{\mathrm{2}} <{x}_{\mathrm{3}} .\:{T}\::\:{P}_{\mathrm{2}} \rightarrow{R}^{\mathrm{3}} \:\mathrm{defined} \\ $$$$\mathrm{with}\:\mathrm{rule}\:{T}=\begin{bmatrix}{{P}\left({x}_{\mathrm{1}} \right)}\\{{P}\left({x}_{\mathrm{2}} \right)}\\{{P}\left({x}_{\mathrm{3}} \right)}\end{bmatrix}…
Question Number 54962 by gunawan last updated on 15/Feb/19 $$\mathrm{Let}\:{X}=\left\{\left(−\mathrm{1},\:\mathrm{0},\:\mathrm{0}\right),\:\left(\mathrm{1},\:\mathrm{1},\:\mathrm{0}\right),\:\left(\mathrm{0},\:\mathrm{1},\:\mathrm{1}\right)\right. \\ $$$$\mathrm{and}\:\mathrm{ortogonal}\:\mathrm{projection}\:\mathrm{at}\:{X}. \\ $$$$\mathrm{Matrices}\:\mathrm{representation}\:\mathrm{P}\:\mathrm{to} \\ $$$$\mathrm{basic}\:\mathrm{basis}\:\mathrm{in}\:\mathrm{space}\:\mathrm{Euclid}\:\mathrm{R}^{\mathrm{3}} \:\mathrm{is}.. \\ $$ Terms of Service Privacy Policy Contact:…