Menu Close

Category: Mensuration

Question-98919

Question Number 98919 by  M±th+et+s last updated on 17/Jun/20 Commented by  M±th+et+s last updated on 17/Jun/20 $${let}\:\bigtriangleup{ABC}\:{is}\:{an}\:{equilateral}\:{triangle} \\ $$$${then}\:{find}\: \\ $$$$ \\ $$$${i}.\:\:\:{arg}\left(\frac{{Z}_{\mathrm{2}} −{Z}_{\mathrm{3}} }{{Z}_{\mathrm{3}}…

Question-164305

Question Number 164305 by ajfour last updated on 16/Jan/22 Commented by ajfour last updated on 16/Jan/22 $${Find}\:\:\frac{{r}}{{R}}\:,\:\:{if}\:{all}\:{colored}\:{regions} \\ $$$$\:\:\:\:\:\left({blue},\:{brown},\:{maroon}\right)\:{have} \\ $$$$\:\:{equal}\:{areas}.\:\:\:{Take}\:{h}=\mathrm{7}. \\ $$ Answered by…

Question-98516

Question Number 98516 by bemath last updated on 14/Jun/20 Commented by Aziztisffola last updated on 14/Jun/20 $$\left.\:\mathrm{Hi}\:\mathrm{sir}\:\mathrm{best}\:\mathrm{draw}!\:\mathrm{which}\:\mathrm{app}\:\mathrm{do}\:\mathrm{you}\:\mathrm{use}\:?\right)=\sqrt{\mathrm{x}+\sqrt{\mathrm{x}+\sqrt{\mathrm{x}+…}}}\:\Leftrightarrow\:\mathrm{f}^{\mathrm{2}} \left(\mathrm{x}\right)=\mathrm{x}+\mathrm{f}\left(\mathrm{x}\right) \\ $$$$\mathrm{I}\:\mathrm{need}\:\mathrm{the}\:\mathrm{best}\:\mathrm{one}. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{x}\right)−\mathrm{f}\left(\mathrm{x}\right)−\mathrm{x}=\mathrm{0} \\ $$$$=\left(−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{4}×\mathrm{1}×\left(−\mathrm{x}\right)=\mathrm{1}+\mathrm{4x}…

what-is-the-length-of-the-chord-cut-off-by-y-2x-1-from-circle-x-2-y-2-2-

Question Number 98098 by bobhans last updated on 11/Jun/20 $$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{chord}\:\mathrm{cut} \\ $$$$\mathrm{off}\:\mathrm{by}\:\mathrm{y}\:=\:\mathrm{2x}+\mathrm{1}\:\mathrm{from}\:\mathrm{circle}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{2} \\ $$ Answered by john santu last updated on 11/Jun/20 Commented…

how-to-prove-the-volumn-of-dimensional-sphare-formula-V-N-R-pi-N-2-N-2-1-R-N-

Question Number 97888 by  M±th+et+s last updated on 10/Jun/20 $${how}\:{to}\:{prove}\:\left(\left({the}\:{volumn}\:{of}\right.\right. \\ $$$$\left.{d}\left.{imensional}\:{sphare}\right)\right)\:{formula} \\ $$$${V}_{{N}} \left({R}\right)=\frac{\pi^{{N}/\mathrm{2}} }{\Gamma\left(\frac{{N}}{\mathrm{2}}+\mathrm{1}\right)}\:{R}^{{N}} \\ $$$$ \\ $$ Commented by EmericGent last updated…