Question Number 93991 by i jagooll last updated on 16/May/20 Commented by i jagooll last updated on 16/May/20 $$\mathrm{find}\:\mathrm{the}\:\mathrm{shaded}\:\mathrm{area} \\ $$$$ \\ $$ Commented by…
Question Number 28399 by ajfour last updated on 25/Jan/18 Answered by ajfour last updated on 25/Jan/18 $${eq}.\:{of}\:{circle}: \\ $$$${x}={r}+{r}\mathrm{cos}\:\theta\:\:,\:{y}={r}+{r}\mathrm{sin}\:\theta \\ $$$${eq}.\:{of}\:{line}: \\ $$$$\frac{{x}}{{a}}+\frac{{y}}{{b}}=\mathrm{1} \\ $$$$\:{intersection}\:{points}:\:\:\theta_{\mathrm{1}}…
Question Number 93717 by john santu last updated on 14/May/20 Answered by john santu last updated on 14/May/20 Commented by john santu last updated on…
Question Number 93540 by M±th+et+s last updated on 13/May/20 Commented by M±th+et+s last updated on 13/May/20 $${correct}\:{sir}\: \\ $$ Commented by M±th+et+s last updated on…
Question Number 158977 by physicstutes last updated on 11/Nov/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 27771 by ajfour last updated on 14/Jan/18 Commented by ajfour last updated on 14/Jan/18 $${If}\:{an}\:{equilateral}\:{triangle}\:{of} \\ $$$${edge}\:{length}\:{a}\:{is}\:{rotated}\:{about} \\ $$$${about}\:{its}\:{vertex}\:{A}\:{by}\:{an}\:{angle}\:\theta \\ $$$${find}\:{the}\:{area}\:{common}\:{in}\:{its} \\ $$$${new}\:{and}\:{previous}\:{positions}.…
Question Number 158751 by puissant last updated on 08/Nov/21 $${Q}\:\mathrm{158528} \\ $$$$ \\ $$$$\:\:\:\:\:\:\mathbb{P}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\frac{\left({n}+\mathrm{1}\right)^{\mathrm{3}} −\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{3}} +\mathrm{1}}\right) \\ $$$$\Rightarrow\:\mathbb{P}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\frac{\left({n}+\mathrm{1}\right)^{\mathrm{3}} −\mathrm{1}^{\mathrm{3}} }{\left({n}+\mathrm{1}\right)^{\mathrm{3}} +\mathrm{1}^{\mathrm{3}}…
Question Number 158740 by ajfour last updated on 08/Nov/21 Commented by ajfour last updated on 08/Nov/21 $${Find}\:{area}\:{of}\:\bigtriangleup{ABC}\:{in} \\ $$$${terms}\:{of}\:{a},{b},{c}. \\ $$ Answered by ajfour last…
Question Number 93166 by john santu last updated on 11/May/20 Answered by john santu last updated on 11/May/20 $$\mathrm{let}\:\mathrm{put}\:\mathrm{the}\:\mathrm{right}\:\mathrm{angle}\:\mathrm{at}\:\mathrm{B}\left(\mathrm{0},\mathrm{0}\right)\:,\:\mathrm{A}\left(\mathrm{0},\mathrm{3}\right) \\ $$$$\mathrm{C}\left(\mathrm{4},\mathrm{0}\right)\:.\:\mathrm{for}\:\mathrm{a}\:\mathrm{general}\:\mathrm{right}\:\mathrm{triangle} \\ $$$$\mathrm{A}\left(\mathrm{0},\mathrm{a}\right),\:\mathrm{B}\left(\mathrm{0},\mathrm{0}\right),\mathrm{C}\left(\mathrm{c},\mathrm{0}\right) \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{X}\left({x},\mathrm{y}\right)\:\Rightarrow\mathrm{T}\left({x},\mathrm{y}\right)=\:…
Question Number 93125 by john santu last updated on 11/May/20 Commented by john santu last updated on 11/May/20 $$\mathrm{find}\:\mathrm{the}\:\mathrm{shaded}\:\mathrm{area}\: \\ $$ Commented by i jagooll…