Question Number 19912 by ajfour last updated on 17/Aug/17 Commented by ajfour last updated on 18/Aug/17 $${Find}\:{tangent}\:{of}\:{the}\:{acute}\:{angle} \\ $$$${between}\:{AB}\:{and}\:{SC}\:{and}\:{the} \\ $$$${shortest}\:{distance}\:{between}\:{them}. \\ $$$${The}\:{side}\:{of}\:{the}\:{equilateral}\:{triangle} \\ $$$${is}\:{even}\:\boldsymbol{{a}}.\:{SA}\:{is}\:{perpendicular}\:{to}…
Question Number 19796 by ajfour last updated on 15/Aug/17 Commented by ajfour last updated on 15/Aug/17 $$\mathrm{Q}.\mathrm{19794}\:\:\:\left(\mathrm{solution}\right) \\ $$ Answered by ajfour last updated on…
Question Number 19758 by ajfour last updated on 15/Aug/17 Commented by ajfour last updated on 15/Aug/17 $$\mathrm{In}\:\mathrm{answer}\:\mathrm{to}\:\mathrm{Q}.\mathrm{19741} \\ $$ Answered by ajfour last updated on…
Question Number 19736 by ajfour last updated on 15/Aug/17 Commented by ajfour last updated on 15/Aug/17 $$\mathrm{Q}.\mathrm{19699}\:\:\:\left(\mathrm{solution}\right) \\ $$$$\mathrm{Find}\:\mathrm{r}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{R}\:\left(=\mathrm{100}\right) \\ $$$$\angle\mathrm{OXY}=\mathrm{30}°\:. \\ $$ Answered by…
Question Number 19675 by ajfour last updated on 14/Aug/17 Commented by ajfour last updated on 14/Aug/17 $$\mathrm{Q}.\mathrm{19668}\:\mathrm{Find}\:\mathrm{r}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{side}\:\boldsymbol{\mathrm{d}} \\ $$$$\mathrm{of}\:\mathrm{equilareral}\:\bigtriangleup\mathrm{ABC}\:. \\ $$ Answered by ajfour last…
Question Number 19610 by ajfour last updated on 13/Aug/17 $$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{a}\:\mathrm{circle} \\ $$$$\mathrm{passing}\:\mathrm{through}\:\mathrm{the}\:\mathrm{midpoints} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{ABC}\:\mathrm{is} \\ $$$$\mathrm{half}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{circum}- \\ $$$$\mathrm{scribed}\:\mathrm{about}\:\mathrm{the}\:\mathrm{triangle}. \\ $$ Commented by ajfour last updated…
Question Number 19586 by ajfour last updated on 13/Aug/17 $$\mathrm{Given}\:\mathrm{in}\:\mathrm{an}\:\mathrm{isosceles}\:\mathrm{triangle}\:\mathrm{a} \\ $$$$\mathrm{lateral}\:\mathrm{side}\:\mathrm{b}\:\mathrm{and}\:\mathrm{the}\:\mathrm{base}\:\mathrm{angle}\:\alpha. \\ $$$$\mathrm{Compute}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{centre}\:\mathrm{of}\:\mathrm{the}\:\mathrm{inscribed}\:\mathrm{circle}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{centre}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circumscribed}\:\mathrm{circle}. \\ $$ Commented by Tinkutara last updated…
Question Number 84960 by jagoll last updated on 18/Mar/20 Answered by jagoll last updated on 18/Mar/20 Answered by mr W last updated on 18/Mar/20 $$\frac{{x}_{\mathrm{1}}…
Question Number 150405 by liberty last updated on 12/Aug/21 Answered by EDWIN88 last updated on 12/Aug/21 Answered by ajfour last updated on 12/Aug/21 Commented by…
Question Number 19321 by ajfour last updated on 09/Aug/17 $$\mathrm{Parallel}\:\mathrm{tangents}\:\mathrm{to}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{at}\:\mathrm{A} \\ $$$$\mathrm{and}\:\mathrm{B}\:\mathrm{are}\:\mathrm{cut}\:\mathrm{in}\:\mathrm{the}\:\mathrm{points}\:\mathrm{C}\:\mathrm{and}\:\mathrm{D} \\ $$$$\mathrm{by}\:\mathrm{a}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{at}\:\mathrm{E}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{AD},\:\mathrm{BC}\:\mathrm{and}\:\mathrm{the}\:\mathrm{line} \\ $$$$\mathrm{joining}\:\mathrm{the}\:\mathrm{middle}\:\mathrm{points}\:\mathrm{of}\:\mathrm{AE} \\ $$$$\mathrm{and}\:\mathrm{BE}\:\mathrm{are}\:\mathrm{concurrent}. \\ $$ Commented by ajfour…